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ABSTRACT

Establishing secret common randomness between two or multiple devices in a network

resides at the root of communication security. In its most frequent form of key establish-

ment, the problem is traditionally decomposed into a randomness generation stage (ran-

domness purity is subject to employing often costly true random number generators) and an

information-exchange agreement stage, which relies either on public-key infrastructure or on

symmetric encryption (key wrapping).

This dissertation has been divided into two main parts. In the first part, an algorithm

called KERMAN is proposed to establish secret-common-randomness for ad-hoc networks,

which works by harvesting randomness directly from the network routing metadata, thus

achieving both pure randomness generation and (implicitly) secret-key agreement. This al-

gorithm relies on the route discovery phase of an ad-hoc network employing the Dynamic

Source Routing protocol, is lightweight, and requires relatively little communication over-

head. The algorithm is evaluated for various network parameters, and different levels of

complexity, in OPNET network simulator. The results show that, in just ten minutes, thou-

sands of secret random bits can be generated network-wide, between different pairs in a

network of fifty users.

The proposed algorithm described in this first part of this research study has inspired

study of the problem of generating a secret key based on a more practical model to be

explored in the second part of this dissertation. Indeed, secret key establishment from com-

mon randomness has been traditionally investigated under certain limiting assumptions, of

which the most ubiquitous appears to be that the information available to all parties comes
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in the form of independent and identically distributed (i.i.d.) samples of some correlated

random variables. Unfortunately, models employing the i.i.d assumption are often not accu-

rate representations of real scenarios. A more capable model would represent the available

information as correlated hidden Markov models (HMMs), based on the same underlying

Markov chain. Such a model accurately reflects the scenario where all parties have access

to imperfect observations of the same source random process, exhibiting a certain time de-

pendency. In the second part of the dissertation , a computationally-efficient asymptotic

bounds for the secret key capacity of the correlated-HMM scenario has been derived. The

main obstacle, not only for this model, but also for other non-i.i.d cases, is the computational

complexity. This problem has been addressed by converting the initial bound to a product of

Markov random matrices, and using recent results regarding its convergence to a Lyapunov

exponent.
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CHAPTER 1. INTRODUCTION TO THE

INFORMATION-THEORETIC CRYPTOGRAPHY

1.1 Introduction

Information-theoretic methods are among the most important approaches in the field of

security whose merit is that they require no assumptions about computational capabilities of

adversaries. The introduction of these methods goes backs to 1949, when Shannon initially

studied the secrecy based on the model in Figure 1.1.

In this model, plain text message (M) is encrypted into ciphertext (C) by applying a

shared key (K) at the transmitter, with the decryption process accomplished using the same

key at the receiver. The main goal is to transmit M in secrecy. Shannon defined the system

to be perfectly secure if knowledge of the plaintext message cannot be achieved just by

knowing the ciphertext 1.

I(M ;C) = 0 (1.1)

Moreover, the receiver must have capability for decrypting the plaintext by knowing both

the ciphertext and the key.

H(M |C,K) = 0 (1.2)

By considering such conditions, Shannon [1], using a combinatorial proof, showed that

H(K) ≥ H(M). In other words, the length of the key should be larger than the length

1The preliminaries of information theory have been reviewed in Appendix A
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Transmitter Receiver 

Plaintext 

M 

Ciphertext 

C 

Plaintext 

M 

Key 

K 

Key 

K 

Figure 1.1 Shannon’s Model to Study the Secrecy

of the plaintext, a proposition known as ”Shannon’s pessimistic result”. Yeung [2] used a

technique based on an information diagram to prove the same result.

Wyner [3] in 1975 introduced a wiretap channel and studied this models secrecy capacity.

Wyner’s model consists of two channels; the first channel is located between legitimate users

(main channel) and second channel is located between a sender and an attacker (attacker’s

channel). Wyner assumed the main channel to be better than the attacker’s channel and

also assumed that the attacker is a passive attacker and cannot send any message into the

channels. The main goal in the wiretap model is to transmit message M in such a way that

the attacker can obtain no information about it. Wyner showed that in the wiretap model

there is no need for a pre-existing shared secret key between legitimate sender and receiver.

Csiszár and Körner [4] generalized Wyner’s model by assuming that the attacker’s channel is

not inferior to the main channel, and studied the secrecy capacity of the new model, depicted

in Figure 1.2.

An important problem in the field of security is generating a secret key, the basic tenet

of cryptography and secure communication. Generating a secret key based on information

theoretic methods was initially studied by Maurer [5] and Ahlswede and Csiszár [6].
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Encoder 
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Figure 1.2 Wiretap Model

In this chapter, the problem of generating a secret key between two users for the case of

independent and identically distributed (i.i.d) random variables is defined, followed by the

exploration of prevalent concepts and tools employed in information-theoretic methods.

1.2 Generating Secret Key in the case of i.i.d Random Variables

Assume i.i.d repetition of (X, Y, Z) with joint probability distribution PXY Z . In the

process of generating a secret key, Alice, who can observe Xn, wants to produce secret

common randomness with Bob, who has access to Y n, by exchanging message F over a public

channel. This key should be hidden from the perspective of Eve who has side information

Zn and can also overhear the public communication.

The process of generating a secret key is composed of two phases: information reconcilia-

tion and privacy amplification. The aim of the former is to generate (with high probability)

the same common information between the two parties. Since, in the information reconcili-

ation phase, two parties using public communication reveal some information to a potential

eavesdropper, the goal of privacy amplification is to boost the security of the generated key

by extracting a (shorter) secret that is uniformly distributed over its space, given the ad-

versary’s knowledge. At the end of the protocol, Alice and Bob have random variables KA
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and KB for the secret key (Figure 1.5). This model for generating secret key is called the

source-type model. The two random variables must with high probability be the same and,

given Eve’s knowledge (F and Zn), their probability distribution must be uniform.

The techniques employed in i.i.d models are based on important theorems, most related

to typical sequences, packing lemma, Slepian-Wolf theorem, etc. (we have provided an

introduction to these concepts in Appendix A). In this section we will review methods for

generating a secret key in i.i.d models.

For simplicity, assume that, while Eve has no side information (there is no any Z), she can

overhear the public communication between Alice and Bob (F ). At the end of the process

of generating a secret key, KA and KB should with high probability be the same and their

distribution must be uniform. The key should also be independent of public communication.

In some literature, this condition is stated as follows.

I(F ;K) ≤ ε (1.3)

We will present an accurate definition of secret key in Chapter 3 of this thesis.

It can be proved that converse bound of the secret key length per observation in the i.i.d

framework is RK < I(X;Y ).

The achievability proof for this problem has been traditionally solved using random

binning and the Slepian-Wolf theorem. Intuitively, based on Slepian-Wolf theorem, if Alice

sends nH(X|Y ) bits to Bob, Bob can reconstruct Xn (this phase is called information

reconciliation phase) so that both Alice and Bob have nH(X) bits at their disposal while

nH(X|Y ) of these bits have been released. The secret key length per observation would

therefore be

1

n
(nH(X)− nH(X|Y )) = H(X)−H(X|Y ) = I(X;Y ) (1.4)
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 PY|X Encoder Decoder 
M 

F F 

Xn Yn 

M’ 

Figure 1.3 Discrete Memoryless Channel Model

As mentioned above, the exact proof of achievability is traditionally based on random

binning. Yassaee, et. al, [7] have proposed a new approach for the proof of achievability. This

proposed method, called output statistics of random binning (OSRB), can be considered

as a general framework for obtaining achievability results in network information theory

problems. In other words, it can be employed as an alternative approach instead of using

traditional packing and covering lemmas. The main idea in OSRB is exploiting duality

between problems. For example, they show that by observing the duality existing between

channel coding and secret key generation, the secret-key achievability rate can be derived.

Consider a DMC with message M and shared codebook F that can be considered as shared

randomness. By considering the model depicted in Figure 1.3 as a Bayesian network, the

joint probability distribution of this model can be written as follows.

P uni
M PFPXn|MFPY n|XnPM̂ |FY n = (1.5)

PXnMFPY n|XnPM̂ |FY n =

PXnPMF |XnPY n|XnPM̂ |FY n =

PXnY nPMF |XnPY n|XnPM̂ |FY n

The last expression states the joint probability distribution for the generating secret key

model illustrated in Figure 1.4. Hence, by choosing R < I(X;Y ), the error probability of
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Figure 1.4 Source Secret Key Generation Model

these two models are the same and F and M are independent of one another, meeting all

the required conditions for generating a secret key.

1.2.1 OSRB Framework

As discussed earlier, the OSRB framework can be considered as an alternative method

for packing and covering lemmas, and in this section, after reviewing a simple form of two

important theorems in OSRB, we will employ them for solving the two earlier-mentioned

important problems.

Theorem 1. Consider (Xn
1 , X

n
2 , Y

n) as an i.i.d repetition of distributed sources with joint

probability distribution PXn
1 X

n
2 Y

n. Then, by assuming random binning (B1 and B2) as follows:

Bi : X n
i → [1 : 2nRi ], i = 1, 2 (1.6)

if

R1 ≥ H(X1|X2Y ) (1.7)

R2 ≥ H(X2|X1Y )

R1 +R2 ≥ H(X1X2|Y )
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then

EB1B2(‖Ṗ (xn
1 , x

n
2 , y

n, x̂n
1 , x̂

n
2 )− P (xn

1 , x
n
2 , y

n)�[xn
1 = x̂n

1 , x
n
2 = x̂n

2 ]‖) → 0 (1.8)

as n goes to ∞.

Note that Ṗ is the random probability distribution induced by two random binnings.

Theorem 1 is an equivalent form of the Slepian-Wolf theorem. [7]

Theorem 2. Consider (Xn
1 , X

n
2 , X

n
3 ) as an i.i.d repetition of distributed sources with joint

probability distribution PX1X2X3. Then, by assuming random binning (B1 and B2) as follows:

Bi : X n
i → [1 : 2nRi ], i = 1, 2 (1.9)

and if

R1 ≤ H(X1|X3) (1.10)

R2 ≤ H(X2|X3)

R1 +R2 ≤ H(X1X2|X3)

then

EB1B2(‖Ṗ (b1(x
n
1 ), b2(x

n
2 ), x

n
3 , x̂

n
1 , x̂

n
2 )− P (xn

3 )P
uni(b1(x

n
1 ))P

uni(b2(x
n
2 ))‖) → 0 (1.11)

as n goes to ∞.

In this theorem bi is the realization of Bi.

To apply the OSRB framework to solving the earlier-mentioned problem of generating a

secret key mentioned, let us assume in theorem 1 that if there is no Xn
2 and Xn

1 = Xn, the

result is that if RF = R ≥ H(X|Y ), then Bob can reconstruct Xn. As discussed earlier, the
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Figure 1.5 The Model for Generating Secret Key

result is the equivalent of the Slepian-Wolf theorem. If Alice and Bob then apply another

random binning with rate Rk on the Xn and if Rf+RK < H(X), the output of this process is

uniformly distributed and independent of the output of the first random binning. To achieve

this result we have used theorem 2 assuming X1 = X2 = X and no X3.

1.3 Preliminary Concepts in Generating Secret Keys for

non-i.i.d Cases

As mentioned earlier, the results of generating a secret key in the i.i.d cases are proved

using typicality arguments, and therefore cannot be employed in non-i.i.d models. In this

part the main tools to study non-i.i.d models have been explored.

1.3.1 Information Spectrum and Smooth Entropies

Let X be defined as a general random variable with probability distribution of PX . The

information spectrum of the random variable X is the probability distribution of the random

variable log 1
PX

(this latter random variable is usually called the self-information of X). Two
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points of the information spectrum are of importance in this regard: Hmax(PX) = max log 1
PX

,

and Hmin(PX) = min log 1
PX

(see Figure 1.7). Loosely speaking, Hmax(PX) is related to

the number of bits required to reconstruct the random variable X. As an example, if the

minimum probability of a discrete random variable is 1
16
, in the worst-case scenario, X will

have 16 realizations each with probability 1
16
. So, the random variable can be defined with 4

bits. In the same vein, Hmax(PXY |PY ) is the number of required bits to reconstruct X while

having perfect information of Y .

On the other hand, Hmin(PX) is roughly related to the number of intrinsic secure bits that

can be extracted from random variable X. As discussed in Definition 7 and 8, a secret key

has to have a uniform distribution. So for example, when a random variable X is distributed

uniformly over its four realizations, two secure bits can be extracted. Let X be distributed

over ten realizations. Except one realization with probability 1
4
, the probability of the rest

for each realization is 1
12
. Although X is not uniform, a uniform random variable can easily

be produced from X by bundling some realizations of X, as depicted in Figure 1.6 – in this

case, each mass point of the probability distribution of the new variable equals the maximum

of p(X). Even when bundling cannot produce a completely uniform random variable, the

result of bundling, over multiple samples, can be made close to the uniform distribution. This

closeness is usually measured by the statistical distance and will be discussed more in 1.3.2.

As intuition suggests, a form of Hmax(PXY |PY ) is a fundamental term in the information

reconciliation phase where Bob (with access to Y ) needs to reconstruct Alice’s signal (X).

Also, we will show thatHmin(PXZ |PZ) appears in the privacy amplification phase where Alice

and Bob need to extract random bits form X while Eve has side information represented by

(Z).

More random bits can be generated in the privacy amplification phase, and fewer bits

can be sent in the reconciliation phase, if a small amount of error can be tolerated. This

leads to considering probability distributions that are not identical, but statistically close to
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Figure 1.6 Converting random variable X to a uniform random variable

the true distribution. This is the core idea of smooth entropies [8], [9], [10]. As an example,

by ignoring the smallest probabilities of a random variable, the new Hmax can move slightly

to the left of the initial Hmax of the true distribution depicted in Figure 1.7. The new

Hmax is called the smooth maximum entropy. Formally, conditional maximum entropy and

conditional smooth maximum entropy are defined as follows.

Definition 1.

Hmax(PXY |PY ) = − log min
x∈Xy∈Y

PXY

PY

(1.12)

Hε
max(PXY |PY ) = min

QXY ∈Bε(PXY )
Hmax(QXY |QY ) (1.13)

where Bε(PXZ) is the set of all non negative functions over X ×Y such that QXY ≤ PXY

and d(QXY , PXY ) ≤ ε, where d is the statistical distance.

Similarly, smooth minimum entropy is defined by cutting down the largest probabilities

of a random variable [8]. With this process the new Hmin will be placed on the right side

of the Hmin of the true distribution. Heuristically more random bits can be generated by
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smooth minimum entropy, at the penalty that, with some small probability ε, the randomness

extraction process will completely fail. The formal definitions for minimum entropy and

conditional smooth minimum entropy are as follws.

Definition 2.

Hmin(PXZ |PZ) = − log max
x∈Xz∈Z

PXZ

PZ

(1.14)

Hε
min(PXZ |PZ) = max

QXZ∈Bε(PXZ)
Hmin(QXZ |QZ) (1.15)

Not only are information spectrum methods useful in the single-shot scenario, but we can

extend the techniques to a sequence of length n. To study asymptotic behavior of a general

sequence Wn, two fundamental probabilistic operations, i.e, limit superior and limit inferior

(Figure 1.8) are defined:

P − lim sup
n→∞

Wn ≡ inf{α| lim
n→∞

Pr{Wn > α} = 0} (1.16)

P − lim inf
n→∞

Wn ≡ sup{β| lim
n→∞

Pr{Wn < β} = 0} (1.17)

1.3.2 Randomness Extractors in Privacy Amplification

Randomness extractors are used in the privacy amplification phase. They take as input

the common sequence shared between Alice and Bob at the end of the information recon-

ciliation phase, and output a uniformly random (from the eavesdropper’s perspective) and

usually shorter sequence to be used as a secret key. There are two types of extractors: de-

terministic and seeded. In the former type, a fixed function is employed to extract secret

bits from the known random variable. It can be observed that it is not possible to have a

deterministic extractor for general sources, as the following lemma, proved in [11] shows.
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Lemma 1. For any deterministic extractor E : {0, 1}n → {0, 1}, there exists a random

variable X with Hmin(X) ≥ n− 1 such that E(X) is constant.

To overcome this problem, seeded extractors are used instead. A little extra randomness

called seed is employed in this type of extractor.

Definition 3. Strong seeded extractor

A function E: {0, 1}n × {0, 1}d → {0, 1}u is a (k, ε)-strong seeded extractor if for every

random variable X defined on {0, 1}n with Hmin(PXZ |PZ) ≥ k and seed random variable

R which is uniformly distributed over {0, 1}d, the statistical distance between PE(X,R)RZ and
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P u
unifPRZ is less than ε, where P u

unif is the uniform probability distribution over {0, 1}u and

Z represents the eavesdropper’s side information.

It was shown in [12] that such a function E can be constructed by two-universal hash

functions.

Definition 4. Two-universal hash functions [13]

A family of functions F = {f : X → {0, 1}u} is two-universal if

∀x 	= x′ Pf∈F [f(x) = f(x′)] ≤ 2−u, (1.18)

where the probability is with respect to the uniformly random choice of f from the family F .

The leftover hash lemma establishes a connection between strong seeded extractors and

hash functions.

Lemma 2. Leftover hash lemma [13]:

There exists a function chosen uniformly by seed R from two-universal family F which can

be considered as a (k, 1
2
2

u−k
2 )-strong seeded extractor for random variable X with Hmin(PXZ |PZ) ≥

k.

The left over hash lemma directly results in

d(PfR(X)RZ , P
u
unifPZPR) ≤ 1

2

√
2u−Hmin(PXZ |PZ) (1.19)

As intuition suggests and as discussed earlier, the minimum entropy plays an important role

in the privacy amplification phase.

1.3.3 Simple Binary Hypothesis Testing

The goal of a binary hypothesis test is to map an observation into either H0 (null hy-

pothesis) or H1 (alternative hypothesis). This test specifies a rejection region C where the
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decision is made to reject the null hypothesis. If the distribution of a vector variable is of

interest, the following binary hypothesis test can be defined;

H0 : X ∼ Pθ, θ ∈ Θ0

H1 : X ∼ Pθ, θ ∈ Θ1 (1.20)

If the distribution is defined completely with the hypothesis, (Θ0 = {θ0}Θ1 = {θ1}), it

is called simple, otherwise it is composite. So, in the simple binary hypothesis test Pθ0 is

the distribution of X under the null hypothesis and Pθ1 is the distribution of X under the

alternative hypothesis. A test function Φ(x) ∈ {0, 1} can be defined such that if its value

is 0, the null hypothesis has been decided which means x ∈ Cc, otherwise, if Φ(x) = 1, the

alternative hypothesis has been accepted, x ∈ C.
Two types of error can be explored in a hypothesis test: type-I and type-II. Type-I error

(or false alarm) occurs when H0 is true but the test chooses H1. So, in the simple hypothesis

test

PFA = Pθ0(Φ(X) = 1) =
∑
x

Pθ0Φ(x) = EPθ0
[Φ(X)] (1.21)

Type-II error (or missed detection) happens when H1 is true but H0 is decided by the test.

So, in the simple hypothesis test

PMD = Pθ1(Φ(X) = 0) =
∑
x

Pθ1(1− Φ(x)) (1.22)

= EPθ1
[1− Φ(X)]

Although finding a region C with PFA = 0 and PMD = 0 is desirable, such a region

does not exist unless Pθ0 is singular with respect to Pθ1 . In other words, by reducing the

probability of missed detection in a simple hypothesis test, the probability of false alarm

would increase. Hence, with a fixed tolerable amount of probability of false alarm, ε, a test

with minimum probability of missed detection is desirable. Such a test is called the most
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powerful test of size ε and the infimum of the probability of missed detection is denoted by

βε(Pθ0 , Pθ1). The Neyman Pearson lemma shows that such a test exists and it is given by

the following rejection region

C = {x|Φ(x) = 1} = {x|L(θ0)
L(θ1)

≤ K} (1.23)

where L denotes likelihood function andK is a constant that can be calculated from PFA = ε.
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CHAPTER 2. SECRET COMMON RANDOMNESS FROM

ROUTING METADATA IN AD-HOC NETWORKS

2.1 Introduction

Automatic key establishment between two devices in a network is generally performed

either by public-key-based algorithms (like Diffie-Hellman [14]), or by encrypting the newly-

generated key with a special key-wrapping key [15]. However, in addition to the well-

established, well-investigated keying information exchange, one additional aspect of key es-

tablishment is often understated: to ensure the security of the application it serves, the newly

generated secret key has to be truly random. While minimum standards for software-based

randomness quality are generally being enforced [16], many applications rely on often costly

hardware-based true random generators [17]. Sources of randomness employed by true ran-

dom number generators vary from wireless receivers and simple resistors to ring oscillators

and SRAM memory.

In this chapter, we build upon the observation that a readily-available source of ran-

domness is usually neglected: the network dynamics. Indeed, by their very nature, com-

munication networks are highly dynamic and largely unpredictable. Their randomness is

usually evident in easily-accessible networking metadata such as traffic loads, packet delays

or dropped-packet rates. However, as the main focus of our work is on mobile ad-hoc net-

works (MANETs), the source of randomness we shall discuss here is one that is specific to

infrastructure-less networks: the routing information itself. Another interesting feature of

the routing information, in addition to its randomness, is that it can easily be made available

to the devices that took part in the routing process, but it is usually unavailable to those
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devices that were not part of the route. This idea opens the door to a whole new class of

applications: with the proper routing protocol, the routing information could be used for es-

tablishing secret common randomness between any two devices in a mobile ad-hoc network.

This common randomness could then be further processed into true common randomness,

and used as secret keys.

Common randomness was pioneered in [5, 6, 18], where it is shown that if two parties,

Alice and Bob, have access to two correlated random variables (RVs) X ′ and Y ′ respec-

tively, (in either the source or the channel models), a secret key can be established between

them through public discussions and random-binning-like (e.g. hashing) operations. The

key should remain secret from an adversary eavesdropper (Eve) who overhears the public

discussions, and possesses side information (in the form of a third RV Z) correlated with

that available at Alice and Bob. Common-randomness-based key establishment generally

consists of three phases. First, Alice and Bob have to agree on two other RVs X and Y ,

such that H(X|Y ) < H(X|Z) and H(Y |X) < H(Y |Z), where H(·) is the standard Shannon

entropy. This part is sometimes called advantage distillation. Next, Alice and Bob (and also

Eve) sample their respective random variables a large number of times, producing sequences

of values. Then Alice and Bob exchange further messages (over a public channel) to agree

on the same single sequence of values – this phase is the information reconciliation. Finally,

because the agreed-upon sequence is not completely unknown to Eve (Eve can sample her

variable Z synchronously with Alice and Bob), Alice and Bob run a randomness extractor on

it, to produce a secret key (a shorter sequence) which, from Eve’s perspective, is uniformly

distributed over its space – this is the privacy amplification phase. The ideas of [5, 6] have

been recently applied to secret key generation in wireless systems, where secure common

randomness is attained by exploiting reciprocal properties of wireless channels or other aux-

iliary random sources in the physical layer [19, 20, 21, 22, 23, 24, 25, 26, 27]. One noteworthy

observation is that, while the work of [5, 6, 18] considers an information-theoretic approach,
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in practice Alice and Bob do not usually have access to large numbers of values drawn from

their random variables, but rather to only one or a few values. To address this issue, [9]

shows that for such single-shot scenarios, the smooth minimum entropy provides tight upper

and lower bounds on the achievable size of the secret key.

In MANETs, the lack of infrastructure, the nodes’ mobility and the fact that packets are

routed by nodes, instead of fixed devices, have resulted in the need for specialized routing

protocols, like the ad-hoc on-demand distance vector AODV routing, or the dynamic source

routing (DSR) [28]. For our secret-common-randomness-extraction purposes, DSR appears

to be a good candidate, and will be the object of this work. Indeed, for generating secret

common randomness between two separated nodes in the network, they must have some

shared and extractable information. Among other routing protocols in ad hoc networks, DSR

has this primary feature. Namely, DSR contains two main mechanisms – Route Discovery

and Route Maintenance – which work together to establish and maintain routes from senders

to receivers. The protocol works with the use of explicit source routing, which means that

the ordered list of nodes through which a packet will pass is included in the packet header.

It is sets of these routing lists that we shall show how to process into secret keys shared

between pairs of nodes.

Our contributions can be summarized as follows:

1. We show that the randomness inherent in an ad-hoc network can be harvested and

used for establishing secret keys between pairs of nodes that participate in the routing

process.

2. We provide a very practical algorithm for establishing such secret common randomness,

based on the DSR protocol, and we calculate a lower bound and an upper bound on

the achievable number of shared secret bits, using an adversary’s beliefs.
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3. We simulate a realistic ad-hoc network in OPNET Modeler, and show that within only

ten minutes, thousands of secret bits can be shared between different node pairs.

The rest of this chapter is organized as follows. Those parts of the DSR protocol that

are essential for understanding our algorithm are examined in Section 2.2. In Section 2.3, we

describe the system model and state our assumptions. Section 2.4 describes our proposed key

establishment algorithm. Simulation results obtained with OPNET Modeler are presented

and discussed in Section 3.7.

2.2 Dynamic Source Routing

Dynamic source routing (DSR) [28] is one of the well-established routing algorithms for

ad-hoc networks. Under this protocol, when a user (the sender) decides to send a data packet

to a destination, the sender must insert the source route in a special position of the packet’s

header, called the DSR source route option. The source route is an ordered list of nodes that

will help relay the packet from its source to its destination. The sender transmits the packet

to the first node in the source route. If a node receives a packet for which it is not the final

destination, the node will transmit the packet to the next hop indicated by the source route,

and this process will continue until the packet reaches its destination.

To obtain a suitable source route toward the destination, a sender first searches its own

route cache. The route cache is updated every time a node learns a new valid path through

the network (whether or not the node is the source or the destination for that path). If

no route is found after searching the route cache, the sender initiates the route discovery

protocol. During the route discovery, the source and destination become the initiator and

target, respectively.

As a concrete example, suppose node 1 in Figure 2.1 wants to send packets to node 5.

Initially, node 1 does not have any route toward node 5, and thus node 1 initiates a route
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Figure 2.1 Communication among node 1 and 5

discovery by transmitting a single special local broadcast packet called route request. The

route request option is inserted in the packet’s header, following the IP header. To send the

route request, the source address of the IP header must be set to the address of the initiator

(node 1), while the destination address of IP header must be set to the IP limited broadcast

address. These fields must not be changed by the intermediate nodes processing the route

request. A node initiating a new route request generates a new identification value for the

route request, and places it in the ID field of the route request header. The route request

header also contains the address of the initiator and that of the target. The route request

ID is meant to differentiate between different requests with the same initiator and target

– it should be noted here that the same request may reach an intermediate or destination

node twice, over different paths. Each route request header also contains a record listing the

address of each intermediate node through which this particular copy of the route request

has been forwarded. In our example, the route record initially lists only the address of

the initiator node 1. As the packet reaches node 2, this node inserts its own address in the

packet’s route record, and broadcasts it further, and so on, until the packet reaches the target

node 5, at which point its route record contains a valid route (1-2-3-4-5) for transmitting

data from node 1 to node 5.

As a general rule, recent route requests received at a node should be recorded in the

node’s route request table – the sufficient information for identifying each request is the

tuple (initiator address, target address, route request ID). When a node receives a route

request packet, several scenarios can occur. First, if the node is the target, it sends a route
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reply packet to the initiator, and saves a copy of the route (extracted from the route request

route record) in a table called the route cache. Second, if the node has recently seen another

route request message from this same initiator, carrying the same id and target address, or if

the node’s own address already exists in the route record section of the route request packet

(the same request reached the node a second time), this node discards the route request.

Third, if the request is new, but the node is not the target, the node inserts its address in

the packet’s route record, and broadcasts the modified packet. Fourth, if a route exists to

the target address in the node’s route cache, the node sends the route reply.

In our example in Figure 2.1, node 5 constructs a route reply packet and transmits it

to the initiator of the route request (node 1). The source address in the IP header of the

route reply packet is set to the IP address of the sender of the route reply (node 5). In our

example, node 5 is also the target. But this need not occur. Under the DSR protocol, it is

possible that an intermediate node (who is not the target of the route request) already has a

path to the target in its route cache. Then it is this node that transmits the route reply back

to the initiator, and it is its IP address that gets inserted in the source IP address part of

the route reply packet’s header. The route reply packet header also contains a route record.

This route record starts with the address of the first hop after the initiator and ends with the

address of the target node (regardless of whether the node that issues the route reply is the

target or not). In our example, the route record contained in the route reply packet is (2, 3,

4, 5). Including the address of the initiator node 1 in the route record would be redundant,

as the address of node 1 is already included as the destination address in the IP header of

the route reply packet. The combination of the route record and destination address in the

IP header is the source route which the initiator will use for reaching its target. It is also

noteworthy that network routes are not always bidirectional. That is, it may not always

be possible for node 5 to send its route reply to node 1 using a route obtained by simply

inverting the source route. In the more general case, node 5 has to search its own route
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cache for a route back to node 1. If no such path is found, node 5 should perform its own

route discovery for finding a source route to node 1.

2.3 System Model

Mobile ad-hoc networks (MANETs) consist of mobile nodes communicating wirelessly

with each other, without any pre-existing infrastructure. We consider a bidirectional MANET

employing dynamic source routing (DSR), in which the nodes (corresponding to the mobile

devices of the network’s users) are moving in a random fashion in a pre-defined area. The

bidirectional network assumption is usually a practical one, especially when all the nodes in

the network belong to the same class of devices (e.g. smart phones)1.

According to the route discovery protocol outlined in Section 2.2, every single node in the

network is assumed equally likely to be the initiator of a route request packet, at any given

time. Furthermore, we assume that the target of any route request is uniformly distributed

among the remaining nodes. Any route discovery instance will return a path through the

network (the source route), of a given length. The length of a returned path is distributed

according to a probability distribution that depends on all the parameters of the network.

Deriving a model for this probability distribution, based on the network parameters, is

outside the scope of this work. Hence, in the remainder of this chapter, we shall assume that

all nodes have access to such an (empirically-derived) probability distribution over the path

lengths. That is, if we denote the random variable describing the length of some path r by

Lr, then we assume that all the nodes have access to the prior p(Lr = l), for l = 2, 3, . . .. For

our experiments, we run our simulation for a long time, and derive p(Lr = l) by counting the

paths of equal length. We also assume that all paths of the same length are equally probable.

1It should be noted that our algorithm should work (albeit with some reduction in performance) even if
the network is not bidirectional. In this case, the route request ID needs to be inserted in the route reply
packet. The reduction in performance for this scenario follows from the security considerations – namely,
more nodes are involved in the routing mechanism, and hence have access to the source route.
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To express this notion, denote the random variable that samples a path (or a partial path)

by R. Then we can write p(R = r|Lr = l) = 1
Nl

if the length of path r is l (otherwise

the probability is zero), where Nl is the total number of paths of length l. This leads to

p(R = r) = 1
Nlr

p(Lr = lr), where lr is the length of path r.

Our protocol, called KERMAN runs by making each node collect in a table all the source

routes that it is part of – recall that since the network is assumed to be bidirectional, a node

can extract the route request ID, the initiator and the target from the route request packet,

save them in a temporary table, and then, if a route reply packet carrying a source route

with the same initiator and target is observed within a pre-determined time interval, the

node can associate the source route with the route request ID, and save both in a long-term

table.

This mechanism brings about our security model. Since the common randomness es-

tablished between two nodes by our algorithm consists of the source routes, it should be

clear that several other nodes can be privy to this information. For instance, all the nodes

included in a particular source route have full knowledge of this route. Moreover, it is likely

that the route reply packet carrying a source route can be overheard by malicious eavesdrop-

pers that are not part of the source route at all. Therefore, to achieve a level of security,

two nodes will have to gather a large collection of source routes, such that none of the other

nodes that appear in any of the source routes in this collection has access to all the routes in

the collection. Unfortunately this is not enough, because it is still possible that one of the

nodes, most likely a node that is part of many – though not all – routes in the collection,

eavesdropped on all the remaining routes that it is not part of.

We deal with this problem by making an additional assumption: we assume that any two

source routes are exchanged under independent and uniformly distributed network arrange-

ments. That is, for the exchange (route discovery) of each source route, all the nodes in the

network are distributed uniformly, and independently of other exchanges, in their pre-defined
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Figure 2.2 The area covered by l nodes

area. Moreover, the network remains the same for the entire duration of the route discovery

and the associated data transmission. These assumptions are realistic for moderate network

loads, and imply that the network nodes move around fast relative to the time between two

different route discovery phases, but slow relative to the duration of a single communication

session. This means that for any source route, the probability that any node which is not

itself part of the route overhears the route (by overhearing a route reply or a data packet) is

only a function of the network parameters. In the remainder of this section, we show how to

compute the probability that an eavesdropper Eve knows a source route of which it is not

part.

Denote the binary random variable encoding whether an eavesdropper Eve overhears a

source route r by KEve(r). Then p(KEve(r) = 1) depends on: (a) Eve’s reception radius, (b)

the total area of the network (all the places where Eve could be during the communication

session corresponding to source route r), and (c) the length of the path. The computation

is described in Figure 2.2, where it can be observed that the worst-case scenario for a path

of length l is when all the l nodes are arranged in a straight line. In this case, we can use

the following worst-case approximation (obtained by first calculating the area of a circular

segment):

p(KEve(r) = 1|Lr = l) =
Shaded area in Figure 2.2, where circles have radius de

Total network area

=
lπd2e − 2(l − 1)d2e(

π
3
−

√
3
4
)

Stotal

=
d2e(1.91 · l + 1.23)

Stotal

, (2.1)
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where de is the maximum eavesdropping range (the radius of the circles in Figure 2.2), which

is assumed the same for each of the nodes (all nodes transmit with the same power, using

isotropic antennas), and Stotal is the total area of the pre-defined location where the nodes

can move.

Finally, for brevity of presentation in the current version of this work, two additional

assumptions are made: the attackers are purely passive eavesdroppers (as attackers – oth-

erwise, they are allowed to initiate well-behaved communication, just like any other node),

and they do not collude. Dealing with active and colluding attackers is the subject of future

work.

2.4 Proposed Algorithm

In this section we introduce KERMAN, aK ey-E stablishment algorithm based on Randomness

harvested from the source routes in a MANET employing the DSR algorithm. To estab-

lish secret common randomness between two nodes in the MANET, KERMAN uses the

standard sequence of three steps outlined in Section 2.1: advantage distillation, information

reconciliation and privacy amplification.

2.4.1 Advantage Distillation

To accomplish advantage distillation, every node in the network has to maintain a new

table called the Selected Route Table, or SRT. The SRT contains those source routes that

include that node’s address, and for which the route’s destination and route-reply sender

do not coincide. To demonstrate how the SRT is built, we consider the following example.

Take the scenario in Figure 2.3, in which node 1 and 6 are the source and the destination,

respectively. Since node 1 does not have any route to node 6, it generates and broadcasts a

route request packet. Assume that the id of this packet is 14, which means that this is the
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fourteenth attempt that node 1 makes to reach node 6. Further assume that the route request

first reaches node 5 over the path 1-2-3-4-5. As seen in Figure 2.3, node 5 will generate the

route reply from its own route cache (because we assumed that node 5 already knows how to

reach node 6). The transmission path of the route reply from node 5 to node 1 is the upper

path in Figure 2.3 (that is, 5-4-3-2-1), and is consistent with a bidirectional network. Each

intermediate node that receives this route reply inserts the source route in their own SRT.

The SRT has three columns dubbed RID, partial route and full route respectively. RID is a

tuple that consists (Source IP, Destination IP, route request ID, route-reply-sender IP). In

our scenario, nodes 1, 2, 3, 4 and 5 will all record an entry in their respective SRTs, with

the RID 1-6-14-5. The intermediate nodes (2, 3 and 4) can obtain the route request ID by

searching their own route request tables as discussed in Section 2.2. The partial route field of

the SRT entry identifies those other nodes that are supposed to have this particular route in

their SRT – in this case, nodes 1, 2, 3, 4 and 5. The full route field is the entire route from

source to destination, which will be used for data transmission (1,2,3,4,5,6 in this case). The

SRTs of the nodes 1, 2, 3, 4 and 5 have the same following entry:

RID Partial Route Full Route

1-6-14-5 1-2-3-4-5 1-2-3-4-5-6

It should be noted that, because node 6 did not directly hear the route request from node 1,

it has no way of determining the route request ID in the RID, and this is why it cannot store

this entry in its SRT, although it will most likely learn the source route from the received

data packets that follow the route discovery phase. Thus, although node 6 will not use this

specific route for establishing a secret key with one of its peers, when discussing the security

of the established secret common randomness between two other peers sharing this route,

node 6 will be considered a possible eavesdropper (i.e. node 6 will be assumed to have full

knowledge of the full route). Each full route in a nodes’ SRT is only available to a limited

number of nodes in the network, i.e., those nodes which are included in in the source (full)
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Figure 2.3 Example for proposed algorithm

route, along with some nodes who are not part of the source route but happen to overhear the

route request and route reply exchange. The following proposition states that SRT entries

are unique in the whole network.

Proposition 1. If two nodes have the same RID in their own SRTs, then the full routes

associated with this RID in two SRTs are exactly the same.

Proof. Based on the DSR protocol [28], in the phase of processing a received route request,

several steps must be performed in a well-defined order. The step consisting of the search in

the route request table is done before the phase of sending route reply from the route cache.

But if, while searching the route request table, a node finds that it has received this route

request before, the node must discard the route request packet. Hence, an intermediate node

can initiate the route reply only in response to the first route request, and will ignore all

subsequent route requests with the same ID, source and destination. Since the SRT only

contains routes in which the destination is different than the route reply sender, it is not

possible that multiple route replies originate from the same node in response to the same

route request, even if the route request was received multiple times, via different paths. Now,

although two different route replies in response to the same route request can originate at

different nodes, (for example, in Figure 2.3 node 7 also knows a path to node 6 and initiates

a route reply), the RIDs corresponding to these route replies contain the IP of the route
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reply sender, and hence are different. Note that if the SRT contained routes for which the

destination and the route-reply sender coincide, multiple routes could be associated with the

same RID – this is an undesirable effect, and needs to be prevented by properly constructing

the SRT.

2.4.2 Information Reconciliation

Information reconciliation is usually a complex process, involving techniques from channel

or source coding, and displaying very restrictive lower bounds on the amount of information

that needs to be transmitted over a public channel [9] – these bounds can often leave very

little uncertainty for an eavesdropper. Fortunately, KERMAN is particularly well-suited for

information reconciliation, and only requires minimal communication overhead. This is due

to the fact that in KERMAN the common randomness is based on full routes, and each full

route is uniquely identified, at both parties, by its RID, thus making reconciliation simpler.

Let us assume that two nodes –call them Alice and Bob for simplicity – realize that they

share a large number of routes in their SRTs. For instance, Alice could first notice that

Bob is part of a large number of partial routes in her SRT, and could ask Bob to perform

information reconciliation, with the purpose of eventually generating a shared secret key.

Upon Bob’s acceptance, Alice sends him the list of RIDs corresponding to the partial routes

in Alice’s SRT that include the address of Bob. Bob can then verify whether he already has

the received RIDs in his SRT, and can send back to Alice only those RIDs that he could not

locate. The information reconciliation is now complete. Alice and Bob share a set of full

routes, which constitute their common randomness.

There is but one caveat. As mentioned in Section 2.4.1, the RIDs consist of the tuples

(Source IP, Destination IP, route request ID, route-reply-sender IP) corresponding to each

route request/ route reply pair. Moreover, it is possible that Alice and Bob are neither the

source nor the destination, nor the route-reply sender. Thus, transmitting an RID in the
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clear, over a public channel, may expose up to five nodes of the route (source, destination,

route-reply sender, Alice and Bob) to an eavesdropping adversary. Many practical solutions

can be employed to limit the amount of information that the reconciliation leaks to potential

eavesdroppers. As a starting point, several solutions are provided in [29].

But such solutions are outside the scope of this work. Instead, we take a different

approach, and provide a lower bound and an upper bound on the total number of secret bits

achievable by KERMAN, network-wide. For the lower bound, we consider the case when the

RIDs are indeed transmitted in the clear, while for the upper bound, we consider the case

where the RIDs are transmitted while being completely protected (by some hypothetical

encryption mechanism) from any potential eavesdroppers. In both scenarios, however, we

assume that every node in the network can see that Alice and Bob exchange RIDs – and

thus any eavesdropper knows that the identities of Alice and Bob are part of the full routes

used for secret key generation.

2.4.2.1 The lower bound: RIDs transmitted in the clear

Some information about the full routes is known to leak from the corresponding RIDs.

But exactly how much information leaks is subject to the properties of the (Alice, Bob,

route, RID) tuple. More precisely, these tuples can be divided into seven types, which can

then be grouped into three different groups, according to their information-leakage behavior,

as shown in Table 2.1. Group 1 consists of the cases in which the RID reveals information

about a single node, in addition to Alice and Bob. Groups 2 and 3 include the cases in which

the RIDs leak information about two and three nodes, respectively, in addition to Alice and

Bob. In Table 2.1, A and B stand for Alice and Bob (and are interchangeable), while X and

Y represent two nodes other than A and B. For example, in Group 2, type 4 , Alice is the

source but destination and route replier are two distinct nodes other than Bob.
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Table 2.1 Different groups and types when we send RID in clear

Group Type Source Destination RREP Sender
1 1 A B X

2 A X B
3 X A B

2 4 A X Y
5 X A Y
6 X Y A

3 7 X Y Z

2.4.2.2 The upper bound: RIDs completely protected

In this case, the only information that leaks to an eavesdropper in the process of infor-

mation reconciliation is that the identities of Alice and Bob have to appear in every one of

the full routes, the RIDs of which are being exchanged between Alice and Bob.

2.4.3 Privacy Amplification

For the purposes of this section we shall represent the full routes as sets of node identifiers,

or addresses. Alice and Bob share a list of common full routes. Now Alice and Bob can

construct the set M = {m1,m2, . . . ,mh} where mi (we’ll call it a trimmed route) is produced

from the full route ri, by removing the addresses of Alice and Bob. At this point, full routes

and trimmed routes are in a one-to-one correspondence. However, it is essential that the

reader remembers the difference between a full route and a trimmed route.

In the next step, Alice partitions the set of trimmed routes M into several disjoint

subsets Mk ⊂ M of various sizes hk, such that, for any Mk = {m1,k,m2,k, . . . ,mhk,k}, the
probability that any node in the network has knowledge of all the hk trimmed routes is less

than a small security parameter ε1. This means that, with probability larger than 1 − ε1,

there exists at least one trimmed route in H that Eve knows nothing about – note that this

is true for any identity that Eve may take (except, of course Eve cannot be Alice or Bob). It
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is the full route corresponding to this trimmed route (different from any node’s perspective)

that constitutes the randomness of the generated secret.

To extract a secret from each of the sets Mk, Alice first represents all the full routes

by binary strings of the same length (according to a mapping previously agreed upon by

all the nodes in the network). The length of the strings is determined as the logarithm to

base two of the total number of possible full routes, in a practical scenario. For example,

from our simulations, we noticed that full routes are limited to 15 nodes, which means

that trimmed routes are limited to 13 nodes. In a network of 50 nodes, there are thus(
48
1

)
3!+

(
48
2

)
4!+ . . .+

(
48
13

)
15! possible full routes involving Alice and Bob, where the factorial

terms account for all the possible arrangements. For example, there are
(
48
1

)
trimmed routes

of length 1, and their corresponding full routes have length 3 (this includes the node that

defines the trimmed route, Alice and Bob), and there are 3! = 6 possible arrangements of

these three nodes. This total number of possible full routes amounts to representing each

full route on 78 bits. The binary sequences representing the full routes corresponding to the

trimmed routes in Mk are then XORed together.

The result is inserted into a (k, ε2)-randomness extractor (defined in 3), which outputs

a shorter bit string sk – the secret. The secret sk should satisfy the (ε1, ε2)-security defined

below.

Definition 5. In the context of a MANET, a piece of secret common randomness sk estab-

lished between two nodes Alice and Bob is called (ε1, ε2)-secure if, with probability larger than

1 − ε1, the secret sk is ε2-close to uniform from the perspective of any node in the network,

except Alice and Bob.

It has been shown in [9] that the number of completely random bits that can be extracted

from a bit sequence should be upper bounded by, but very close to, the smooth min-entropy

of the sequence. Thus, for the purposes of this chapter, we shall only focus on the (smooth)
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minimum entropy of a full route, viewed from the perspective of an eavesdropper. This

minimum entropy is a good indication of the number of secret random bits that can be

extracted from each set Mk, and can be calculated according to Definition 1, where the

probability distribution is that which characterizes Eve’s belief about the full route. Eve’s

belief depends on whether the RID is sent in clear or perfectly protected.

2.4.3.1 The lower bound: RIDs transmitted in the clear

When the RIDs are communicated between Alice and Bob in the clear, Eve will be

able to infer some information about the corresponding full routes agreed on by Alice and

Bob. In addition, the very fact that Eve did not overhear the full route can also leak

some information: longer routes are more likely to have been overheard by Eve. Thus, we

are primarily concerned with the probability distribution p(r|KEve(r) = 0, RID(r))), where

KEve is the binary random variable encoding whether Eve knows the full route (KEve = 1)

or not (KEve = 0), and RID(r) is the RID corresponding to the route r. Since we already

saw that the information leaked to Eve from the RID depends on the group corresponding to

the tuple (Alice, Bob, route, RID) – see Table 2.1 – and since for a specific group all routes

of the same length are equally probable from Eve’s perspective , we can write:

p(r|KEve(r) = 0, RID(r))) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(Lr=lr|KEve(r)=0,group=1)

(N−3
lr−3)(lr−2)!

, group = 1

p(Lr=lr|KEve(r)=0,group=2)

(N−4
lr−4)(lr−2)!

, group = 2

p(Lr=lr|KEve(r)=0,group=3)

(N−5
lr−5)(lr−2)!

, group = 3

(2.2)

where N is the total number of nodes in the network, the random variable Lr represents the

length of the full route (lr is the actual length of route r), and the denominators stand for

the possible number of routes of length lr, and belonging to group i, with i ∈ {1, 2, 3}. For
example in the case of group 1, the number of full routes with length lr in which Eve already
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knows the identities of three nodes (see Table 2.1) is equal to
(
N−3
lr−3

)
(lr − 2)!. This is because

the unknown lr−3 nodes can be picked in
(
N−3
lr−3

)
ways, and then all the nodes, except source

and destination, can be arranged in (lr − 2)! ways.

It now remains to compute p(Lr = lr|KEve(r) = 0, group = 1). We can write:

p(Lr = lr|KEve(r) = 0, group = i) =

=
p(Lr = lr|group = i)p(KEve(r) = 0|Lr = lr, group = i)∑

l
p(Lr = l|group = i)p(KEve(r) = 0|Lr = l, group = i)

, (2.3)

where

p(Lr = lr|group = i) =
p(Lr = lr)p(group = i|Lr = lr)∑

l
p(Lr = l)p(group = i|Lr = l)

. (2.4)

Now p(Lr = l) is derived empirically from our simulation results, as explained in Section 2.3,

while p(group = i|Lr = l) can be written as:

p(group = i|Lr = l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6
(lr)

1
(lr−1)

, i = 1

6
(lr)

(lr−3)
(lr−1)

, i = 2

2(lr−3)
(lr)

(lr−4)
(lr−1)

, i = 3.

(2.5)

To explain (2.5) consider, for example, p(group = 2|Lr = lr) = p(type = 4|Lr = lr)+p(type =

5|Lr = lr)+p(type = 6|Lr = lr) (see Table 2.1). The three probabilities on the right hand side

are all equal. Let’s now look at p(type = 4|Lr = lr). Consider a given route of length lr, where

the component nodes are indexed as 1 (source), . . . , lr (destination), and imagine that Alice,

Bob and the route-reply node (RR) pick uniformly randomly amongst these indices, with the

caveat that Alice cannot be equal to Bob. Then p(type = 4|Lr = lr) = p(Alice = 1)p(Bob 	=
RR ∧Bob ∈ {2, . . . , lr − 1}) + p(Bob = 1)p(Alice 	= RR ∧Alice ∈ {2, . . . , lr − 1}) = 2 1

lr
lr−3
lr−1

.

Finally, whether Eve has eavesdropped a certain route or not does not depend on the

roles of Alice and Bob in the path, nor on the identity of the route-reply sender. So we can

write the last remaining term of (2.3) as p(KEve(r) = 0|Lr = lr, group = i) = p(KEve(r) =

0|Lr = lr) = 1− p(KEve(r) = 1|Lr = lr), which can be computed from (2.1).
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2.4.3.2 The upper bound: RIDs completely protected

When the RID is perfectly protected, the probability of a certain route, from Eve’s

perspective, depends solely on its length.

Since all unknown routes of a given length are equally probable from Eve’s perspective,

we can write

p(r|KEve(r) = 0)) =
p(Lr = lr|KEve(r) = 0)(

N−2
lr−2

)
lr!

, (2.6)

where the denominator represents the number of all possible routes of length lr that contain

Alice and Bob (similarly to (2.2)). Now we can write the probability on the right-hand side

as:

p(Lr = lr|KEve(r) = 0) =

=
p(Lr = lr)p(KEve(r) = 0|Lr = lr)∑

l
p(Lr = l)p(KEve(r) = 0|Lr = l)

. (2.7)

In the right-hand side of (2.7), p(Lr = lr) is the empirically-derived probability distribution

discussed in Section 2.3, while p(KEve(r) = 0|Lr = lr) = 1− p(KEve(r) = 1|Lr = lr) can be

computed from (2.1).

2.4.3.3 The partitioning algorithm

Now the remaining question is how many subsetsMk we can form. To solve this problem,

for any pair of nodes we organize the full set of all trimmed routes M as a selection matrix.

In the selection matrix, a row corresponds to one of the trimmed routes in M. A column

corresponds to a node’s address.

There are 48 columns (one for each node in the MANET, except Alice and Bob). Each

entry in the matrix is the probability that the node in the respective column knows the

full route corresponding to the respective row. The selection matrix can be represented as

follows:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

node 1 node 2 . . . node t

m1 a11 a12 . . . a1t

m2 a21 a22 . . . a2t
...

...
...

. . .
...

mh an1 an2 . . . ant

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where aij is the probability that node j knows full route i. For example, when node j is

a part of the full route corresponding to the trimmed route i, then aij = 1. Otherwise,

aij = p(Kj(i) = 1|Li = li), where lr is the length of route i. The partitioning algorithm

consists of constructing distinct sub-matricesMk, each consisting of hk rows ofM, such that

the product of the entries in each column of Mk be less than ε1. We shall informally call this

property ε1-security, and we shall use the terms subset and sub-matrix interchangeably. An

optimal partition maximizes the number of sub-matrices Mk with the ε1-security property.

Here we propose a näıve partitioning algorithm.

For the upper-bound scenario (perfectly protected RIDs), we build M1 by selecting the

first row in the selection matrix, and adding the next row in the selection matrix, until the

column-wise product condition holds. Then we move to the next row, and start building

M2, and so on, until we run out of rows in M.

For the lower-bound scenario (RIDs sent in the clear), we perform one more step: we

append to each row of selection matrix a number which indicates the group of the corre-

sponding RID. Since min-entropy for each group is different, and the number of extractable

random bits is related to the min entropy, before applying the näıve algorithm, Alice and

Bob should sort their routes based on the group number. That is, routes whose RIDs place

them in groups with higher min-entropy come first. Note that in a subset with routes from

different groups, Alice and Bob have to consider the worst-case scenario. As a concrete

example, if a subset contains routes from groups 3,3,3,2,1 and group 1 has the least min
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Table 2.2 Number of subsets, obtained by the näıve algorithm with ε1 = .001, for
RIDs sent in the clear. Total network-wide achievable number of shared
secret bits, in last column.

No. of Subsets 1 2 3 4
Group 1 2 3 1 2 3 1 2 3 1 2 3 Btotal

No. of Pairs-näıve 203 125 3 31 16 1 4 2 0 3 1 0 862

Table 2.3 Number of subsets, obtained by the näıve algorithm with ε1 = .001, for
protected RIDs. Total network-wide achievable number of shared secret
bits, in last column.

No. of Subsets 1 2 3 4 5 6 7 Btotal

No. of Pairs-näıve 215 75 22 6 1 0 1 4.98 · 103

entropy, the group can only produce a number of random bits equal to the min entropy of

group 1. This is due to the fact that the worst-case scenario is when an eavesdropper knows

all routes, except that belonging to group 1 (recall that Alice and bob do not know who the

eavesdropper might be).

As an alternative to the näıve algorithm, In [30] we provided a better-performing (but

more complex) heuristic algorithm for calculating upper bound, that goes as follows. Starting

with the original selection matrix, we inspect all sub-matrices of two rows, and check whether

any of them satisfies the ε1-security property. If any such disjoint sub-matrices are found, we

count the corresponding subsets of rows Mk, we update the selection matrix by removing

these rows from the original selection matrix, and we go on to inspect all the sub-matrices

consisting of three rows of the updated selection matrix.

So far, the algorithm seems to perform optimally. However, the main problem that pre-

vents the algorithm from being optimal arises because in general several partially-overlapping

sub-matrices can be formed at each step. For example, consider a scenario where two sub-

matrices of two rows have been found to satisfy ε1-security: say these sub-matrices are the

one consisting of rows 2 and 6 of the selection matrix, and the one consisting of rows 2 and
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8. Clearly, only one of them can be considered for privacy amplification, lest we compromise

the entropy of the secret key. We now have to decide which of the two choices results in an

updated selection matrix that is more likely to perform better in future partitions. For our

example, if row 6 is less than row 8 (i.e. component i or row 6 is less than component i of

row 8, for all i), then we should select the sub-matrix containing rows 2 and 8, because row

6 might prove more useful in the future. But because such an ordering of matrices is usually

not clear-cut, we proceed to define our own partial order, which is essentially sub-optimal,

and responsible for the sub-optimality of our heuristic algorithm.

Definition 6. Average-Column-Product Sub-Optimal Partial Order (ACP-PO): For any

two partially-overlapping sub-matrices Mi and Mj of the selection matrix, with Mi

⋂Mj =

Mij 	= ∅, we say that Mi is better than Mj in the ACP-PO sense, and write Mi ≺ Mj if

the mean of the column-wise products of elements of Mi is less than mean of the column-

wise products of elements of Mj. We say that Mi is at least as good as Mj in the ACP-PO

sense, and write Mi � Mj if the mean of the column-wise products of elements of Mi is

less than or equal to the mean of the column-wise products of elements of Mj.

Our algorithm is illustrated by the pseudo-code fragment of Algorithm 1. The algorithm

starts by checking whether at least one sub-matrix verifying the ε1-security condition can

be found – that is, whether the whole original selection matrix satisfies ε1-security. The

algorithm then finds all the sub-matrices of SubsetSize rows ofM that satisfy ε1-security, and

orders them according to the ACP-PO defined above. Recall that this partial order is only

meaningful for two sub-matrices that have at least one row in common, but our algorithm

orders the whole list of subsets anyway. After sorting all sub-matrices in descending ACP-

PO we pick and process the first sub-matrix. We then make sure that the rows we already

picked are not going to be considered again, by updating the ordered list and the selection
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matrix M . The algorithm will then continue to select sub-matrices from the remaining list,

and when the list becomes empty, it switches the search to sub-matrices with more rows.

Algorithm 1 Heuristic Algorithm

1: M=Selection Matrix;
2: SubsetSize = 2;
3: NumberSubsets = 0;
4: L =Number of rows in M ;
5: while Subsetsize ≤ L AND M satisfies ε1-security do
6: for All combinations Mk of Subsetsize rows do
7: if Mk satisfies ε1-security then
8: Calculate average of column-wise products;

9: Sort subsets based on the average of column-wise products;
10: while Not End of List do
11: Select and process first subset in the ordered list and increment NumberSubsets;
12: Delete from the list all subsets that share rows with the selected subset;
13: Update M by deleting all the rows in the selected subset;

14: Increment SubsetSize;
15: Update L;

To gain more insight into the algorithm’s complexity, consider a case in which the initial

selection matrix has h1 rows. In the first stage, the algorithm examines
(
h1

2

)
partitions (sub-

matrices), and if it finds any that satisfy ε1 security, it updates the selection matrix, which

will end up with h2 ≤ h1 rows. The second stage inspects
(
h2

3

)
partitions, and so forth. All

in all the heuristic algorithm should examine
(
h1

2

)
+
(
h2

3

)
+
(
h3

4

)
+ ... partitions, which for most

cases should be a lot less than 2h1 . However, if there is no reduction in the number of rows in

the first stages, the algorithm has to explore all 2h1 partitions. Several simplifying solutions

can be considered to avoid this situation: (1) if it is observed that over a pre-determined

period of time the algorithm produces only sub-matrices with at least S0 rows, then the

algorithm can start with SubsetSize = S0 rather than SubsetSize = 2; (2) the algorithm

can test whether at least two sub-matrices are even possible, by testing whether the whole

(updated) selection matrix M satisfies ε21-security. If it does not, then the algorithm can stop

searching for sub-matrices, and can process the whole selection matrix as a single sub-matrix.
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2.5 Simulation Results

2.5.1 Secret Length and The Secret Bit Rate

The proposed protocol has been simulated in OPNET, using the parameters indicated in

Table 2.4. This choice of parameters results in a maximum eavesdropping range of de = 12m.

Each node sends packets to four random destinations. The number of full routes vs the full

Table 2.4 Simulation Parameters

Simulation Parameters Value

Network Size 100m*100m
Number of Nodes 50

Simulation Duration 600(sec)
Transmit Power(w) .005

Packet Reception-Power Threshold(dBm) -55
Speed(meters/seconds) uniform(.5,1)

Packet Inter-Arrival Time(seconds) exponential(1)

route length is shown in Figure 2.4, and the empirically-derived prior p(Lr = lr) looks similar.

As we discussed earlier, the probability distribution of the unknown full route, used in

calculating the min-entropy, can be obtained from (2.2) (for the lower bound) or from (2.6)

(for the upper bound).These probability distributions are given in Table 2.5.

It can be easily seen that when RID is sent in clear we have Hmin(r|KEve(r) = 0, group =

1) = − log2(0.428) = 1.22, Hmin(r|KEve(r) = 0, group = 2) = − log2(0.13462) = 2.893 and

Hmin(r|KEve(r) = 0, group = 3) = − log2(0.0261) = 5.257, while if the RID is perfectly

protected we get Hmin(r|KEve(r) = 0)) = − log2(0.00062) = 10.66.

In Figure 2.5 we show the number of pairs of nodes that share selection matrices, versus

the number of rows in these shared matrices. Clearly, the larger the number of rows in the

shared selection matrix, the higher the potential for generating more shared secret bits.

The number of subsets produced by the näıve partition algorithm for the whole network is

shown in Tables 2.6 and 2.2, for ε1 = 10−3. We also calculate the maximum achievable total
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Figure 2.4 Number Of Full Routes vs. Full Route Length

Figure 2.5 Number Of Pairs vs. Number of Rows in their shared Selection matrix
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Table 2.5 Probability Distribution of an Unknown Full Route, from Eve’s Perspec-
tive based on Sending RID Type

Route Length 3 4
probability (Clear) 6.2E-4 9.0E-06
Group (Protected) 1 2 3 1 2 3

probability (Protected) .428 0 0 .003 0.1346 0
Route Length 5 6

probability (Clear) 9.7E-08 1.1E-09
Group (Protected) 1 2 3 1 2 3

probability (Protected) 2.2E-05 .001 .026 1.9E-07 8.4E-06 2E-04
Route Length 7 8

probability (Clear) 1.1E-11 1.1E-13
Group (Protected) 1 2 3 1 2 3

probability (Protected) 1.5E-09 6E-08 1.8E-06 1.2E-11 4.5.5E-10 1.5E-8
Route Length 9 10

probability (Clear) 1.2E-15 9.9E-18
Group (Protected) 1 2 3 1 2 3

probability (Protected) 1E-13 5.1E-12 1E-10 8.5E-16 3.7E-14 1E-12
Route Length 11 12

probability (Clear) 1E-19 1E-21
Group (Protected) 1 2 3 1 2 3

probability (Protected) 9.5E-18 4.12E-16 1.1E-14 9E-20 3.8E-18 1.05E-16
Route Length 13 14

probability (Clear 1.6E-23 2E-25
Group (Protected) 1 2 3 1 2 3

probability (Protected) 1.05E-21 4.5E-20 1.23E-18 1.27E-23 5.4E-22 1.48E-20
Route Length 15

probability (Clear) 2E-27
Group (Protected) 1 2 3

probability (Protected) E-25 5.7E-24 1.57E-22
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Figure 2.6 Number Of subsets of a given size (number of rows), vs. Subset size, for
the näıve algorithm (Clear RID) – network-wide results.

network-wide number of shared random bits (between all the possible pairs in the network),

Btotal – this is shown in the last columns of Tables 2.6 and 2.2. For example, for ε1 = 10−3

we have an upper bound of Btotal = 10.66 · (215 · 1 + 75 · 2 + 22 · 3 + 6 · 4 + 1 · 5 + 1 · 7).
Additionally, the numbers of subsets with a given size (number of rows) are shown for the

whole network in Figure 2.6 and Figure 2.7, for the lower-bound and upper-bound scenarios,

respectively.

To compare näıve and heuristic algorithms for ε1 = 10−3, the number of sub-matrices

satisfying ε1-security, produced by two algorithms for the whole network in the case of

protected RID, is shown in table 2.6. We have brought the simulation results for heuristic

algorithm in [30] and the rest of this section has been devoted to the näıve algorithm, unless

otherwise stated.

Additionally, we evaluate the secret bit rate, relative to transmission overhead. Since

the routing information we use for the generation of secret bits comes free (and is normally

discarded), we normalize the number of secret bits by the number of bits transmitted for the
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Figure 2.7 Number Of subsets of a given size (number of rows), vs. Subset size, for
the näıve algorithm (Protected RID) – network-wide results.

Table 2.6 Number of subsets, obtained by the näıve and heuristic algorithms with
ε1 = .001, when considering all full routes of length at least 3 and in the
case of protected RID.

No. of Subsets 1 2 3 4 5 6 7 8 9
No. of Pairs-näıve 215 75 22 6 1 0 1 0 0

No. of Pairs-heuristic 171 70 39 25 9 2 1 2 1
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purposes of information reconciliation, as in Section 2.4.2. Recall that for the reconciliation

of each full route, an RID is transmitted, consisting of three node addresses and a route-

request ID. For a network of 50 nodes, and noticing that in our simulations the route-request

ID does not exceed the value of 500, the RID can be encoded on 3 · �log2(50)� + 9 = 26

bits. The additional packet header overhead is ignored here, because it is easily amortized

– we could transmit many such RIDs in a single packet. The average subset size for the

näıve algorithm in the case of unprotected RIDs is 9.53, and for protected RIDs it is 9.89.

This implies an overhead transmission of 9.53 · 26 = 238.25 and 9.89 · 26 = 257.14 bits per

subset, respectively. The secret bit rate, relative to transmission overhead is thus given by

1.87/238.25 = .00786 (lower bound) and 10.66/257.14 = .0414 (upper bound) secret bits per

bit of overhead.

2.5.2 The Effects of Speed and Transmission Range

2.5.2.1 The effects of node speed

To see the effect of the nodes’ speed in the number of achieved random bits, we have

simulated two additional networks, with the same parameters as those in Table 2.4, except

with node speeds distributed uniformly over (1, 1.5)m/s and over (1.5, 2)m/s, respectively.

Based on our simulation results, the numbers of full routes of any length in the whole

network, for speeds chosen as uniform(0.5, 1) (the original network), uniform(1, 1.5) and

uniform(1.5, 2) were respectively 14544, 18768 and 19900. For fully-protected RIDs, the

minimum entropies (or the numbers of secret bits that can be extracted from a full route

unknown by the eavesdropper), are 10.66, 10.61 and 10.67, respectively. For the case when

the RIDs are sent in the clear, the min entropies corresponding to different groups are given

in Table 2.7.
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Table 2.7 Size of min-entropy based on 3 different speeds in the case of clear RID.
Speed 1, speed 2 and speed 3 are uniform (.5,1), uniform (1,1.5) and
uniform (1.5,2), respectively.

Speed 1 Speed 2 Speed 3
Hmin(r|KEve(r) = 0, group = 1) 1.22 1.237 1.267
Hmin(r|KEve(r) = 0, group = 2) 2.893 2.756 2.800
Hmin(r|KEve(r) = 0, group = 3) 5.257 4.988 5.075

Table 2.8 Number of node pairs vs. number of subsets for three different speeds
by applying näıve algorithm with ε1 = .001, when RID is sent in the
clear. Total network-wide achievable number of shared secret bits, in last
column. Speed 1, speed 2 and speed 3 are uniform (.5,1), uniform (1,1.5)
and uniform (1.5,2), respectively.

No. of Subsets 1 2 3 4 5
Group 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Btotal

No. of Pairs, speed 1 203 125 3 31 16 1 4 2 0 3 1 0 0 0 0 862
No. of Pairs, speed 2 209 127 1 62 34 0 13 10 0 2 4 0 0 1 0 1153
No. of Pairs, speed 3 265 147 1 51 26 0 5 8 0 0 4 0 1 1 0 1172

The increase in the number of route requests being generated at the whole network level

with the increase of the nodes’ speeds is expected, since higher node speeds result in an

increased number of broken links – therefore, nodes have to send new discovery packets for

finding new paths. On the other hand, the increase in the number of paths of a given length

is roughly proportional to the original number of paths, thus leading to roughly the same

minimum entropy values.

The number of achieved random bits, along with the number of subsets in the whole

network are shown in Tables 2.8 and 2.9 for ε1 = 10−3. Not surprisingly, the total network-

wide number of achieved shared secret bits (between any pairs of nodes) also increases with

the node speeds.
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Table 2.9 Number of node pairs vs. number of subsets for three different speeds by
applying näıve algorithm with ε1 = .001, when RID is protected. Total
network-wide number of shared secret bits, in last column.Speed 1, speed
2 and speed 3 are uniform (.5,1), uniform (1,1.5) and uniform (1.5,2),
respectively.

No. of Subsets 1 2 3 4 5 6 7 Btotal

No. of Pairs, speed 1 215 75 22 6 1 0 1 4.98 · 103
No. of Pairs, speed 2 200 77 37 17 12 3 2 6.63 · 103
No. of Pairs, speed 3 260 86 31 12 6 2 1 6.65 · 103

Table 2.10 Size of min-entropy based on 4 different ranges in the case of clear RID.

Range range=3 range=6 range=9 range=12 range=15
Hmin(r|KEve(r) = 0, group = 1) .16 .65 1.056 1.22 1.023
Hmin(r|KEve(r) = 0, group = 2) 1.26 1.88 2.581 2.893 2.64
Hmin(r|KEve(r) = 0, group = 3) 2.58 3.988 4.751 5.257 4.74

2.5.2.2 The effects of transmission range

In the following, we explore the effect of the wireless node range in the number of attained

random bits. To perform this experiment, we simulate networks with the same parameters

as those in Table 2.4, except with different wireless node ranges: 3, 6, 9 ,12 and 15 meters.

The number of secret random bits per subset in the case of fully-protected RIDs, for wireless

ranges 3, 6, 9, 12 and 15 meters, are 8.49, 9.45, 10.28 , 10.66 and 10.25 bits respectively. In

the case of RIDs sent in the clear, the entropy for each group in above the ranges is shown

in Table 2.10. The total number of secret random bits, along with the number of subsets in

the whole network is shown in Tables 2.11 and 2.12 for ε1 = 10−3 in the case of protected

and clear RID respectively.

Based on simulation results, the number of full routes of any length in the whole network

for these five ranges (3, 6, 9, 12 and 15 meters) are respectively 852, 2815, 8984, 14544 and

21648. When the transmission range increases, the nodes can establish communication links

more easily, causing an increase in the number of full routes, and hence in the number of
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Table 2.11 Number of subsets, obtained by the näıve algorithm with ε1 = .001, in
the case of sending RID in clear for different transmission range. Total
network-wide achievable number of shared secret bits, in last column.

No. of Subsets 1 2 3 4 5
Group 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Btotal

No. of Pairs, range=3 27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 89
No. of Pairs, range=6 121 15 1 2 0 0 0 0 0 0 0 0 0 0 0 113
No. of Pairs, range=9 234 122 1 14 6 0 2 1 0 0 1 0 0 0 0 651
No. of Pairs, range=12 203 125 3 31 16 1 4 2 0 3 1 0 0 0 0 862
No. of Pairs, range=15 213 109 0 48 13 0 10 2 0 0 2 0 0 0 0 1480

Table 2.12 Number of node pairs vs. number of subsets for five different ranges by
applying näıve algorithm. Total network-wide number of shared secret
bits, in last column.

No. of Subsets 1 2 3 4 5 6 7 Btotal

No. of Pairs, range=3 29 1 0 0 0 0 0 263.19
No. of Pairs, range=6 134 6 0 0 0 0 0 1.38 · 103
No. of Pairs, range=9 284 60 5 2 0 0 0 4.39 · 103
No. of Pairs, range=12 215 75 22 6 1 0 1 4.98 · 103
No. of Pairs, range=15 207 75 26 5 7 0 0 5.02 · 103



www.manaraa.com

48

shared secret bits. On the other hand, by increasing the transmission range, an eavesdropper

can get information about routes more easily. It is therefore expected that the number of

shared secret bits decreases as the transmission range keeps increasing beyond a certain

point. For example when the range is 50m, the eavesdropper will overhear any route.

2.5.3 Increasing The Secret’s Length by Spoiling Knowledge

Spoiling knowledge was introduced in [12] as a means of (publicly) adjusting a probability

distribution to increase its min entropy. In our specific example, this translates to purposely

discarding the most likely full routes from the SRT. But since all routes of the same length

have the same probability (from Eve’s perspective), we can only increase the min entropy

by discarding all the routes of a given length. The downside, of course, is that the number

of partitions satisfying the properties outlined in Section 2.5.1 also decreases.

To show the effect of spoiling knowledge, we have considered a scenario in which the

speed of nodes is uniform (.5,1) and maximum eavesdropping range is 12 meters. In this

part we have compared the results for two different algorithms, i.e., näıve algorithm and

heuristic algorithm. For our specific scenario, disregarding the full routes of length 3 yields

a min entropy of roughly Hmin(r|KEve(r) = 0)) = − log2(9.02 · 10−6) = 16.76 bits. The

number of subsets produced for the whole network, for ε1 = 10−3, is shown in table 2.13,

for our two different partitioning algorithms. In this case, Btotal is 6.13 · 103 bits for näıve

algorithm and 7.59 ·103 bits for heuristic algorithm. It is interesting to note that the spoiling

knowledge technique achieves a gain of roughly 23% and 49%, in the näıve algorithm and in

the heuristic algorithm respectively.
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Table 2.13 Number of subsets, obtained by the näıve and heuristic algorithms, when
considering only full routes of length at least 4. Total network-wide
achievable number of shared secret bits, in last column.

No. of Subsets 1 2 3 4 5 6 7 8
No. of Pairs-näıve 195 60 11 2 2 0 0 0

No. of Pairs-heuristic 165 56 31 11 5 1 0 1
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CHAPTER 3. ON THE SECRET KEY CAPACITY OF

SIBLING HIDDEN MARKOV MODELS

3.1 Introduction

Establishing a secret key between two or more legitimate parties is the basic principle of

cryptography and secure communication. In the absence of public-key infrastructure, sev-

eral alternative key-establishment approaches have been proposed, and rely on information-

theoretic methods. The merit of such approaches is that they offer information-theoretic

security, and thus do not rely on any assumptions on the computational capabilities of ad-

versaries. Key establishment based on information theoretic methods was initially studied

by Maurer [5] and Ahlswede and Csiszár [6]. By considering the i.i.d repetitions of corre-

lated random variables at the disposal of two legitimate users, called Alice (X) and Bob

(Y ) and one eavesdropper, named Eve (Z), it was shown that when X − Y − Z form a

Markov chain, the secret key capacity equals the conditional mutual information I(X, Y |Z).
This result holds under the additional assumption that Alice and Bob can communicate

over an error-free but insecure public channel, and the eavesdropper Eve cannot manipulate

the information exchanged between Alice and Bob over this channel (the passive attacker

assumption).

The abundance of research building on [5] and [6] maintains the i.i.d character of the

correlated processes available to Alice, Bob and Eve. Nevertheless, it is becoming increas-

ingly clear that real-life scenarios have to be approached based on non-i.i.d assumptions. As

a concrete example, in the recently published KERMAN protocol [31, 30], Alice and Bob

establish a secret key from routing meta-data in an ad hoc network. More precisely, their
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source of randomness is the network’s connectivity, which is highly dynamic due to the move-

ment of mobile nodes in the ad hoc network. However, [31, 30] rely on the assumption that

various observations of the network by the same participant are independent of each other

– such an assumption is practical when the network observations are obtained (sampled)

at intervals of time large enough to de-correlate them1. This is the equivalent of the fast

fading assumption in wireless channels. By contrast, in this chapter we study the scenario in

which the network evolves slowly (relative to the network-observation sampling time), and

consequently the network states at two contiguous sampling times are correlated.

We model the network with a Markov chain – in which a state could describe the net-

work connectivity, perhaps represented as an adjacency matrix – and we model the network

observation mechanism by a noisy channel – at each time instant, an observer would see

an incomplete or noisy version of the adjacency matrix. The specifics of the observation

channel are beyond the scope of this chapter. Instead, we proceed to investigate the se-

cret key capacity of a Sibling Hidden Markov Model (SHMM), where two legitimate users

and one eavesdropper have access to imperfect observations of the same underlying Markov

chain. The applicability of this new model is much more general than the network observa-

tion example outlined above. The model can accurately capture the behavior of any source

model for common randomness, as long as the source can be approximately modeled as

a Markov chain. Additional practical examples of interest include: noisy observations of

wireless transmissions of correlated data (text, voice or moving images [33, 34]), imperfect

observation of the evolution of a complex system (like a community in a social network, or

a geographic community [35, 36] – in this case, the legitimate parties’ advantage could be

based on a better cultural understanding and interpretation of the observed phenomena),

imperfect observations of power fluctuations at different points of a smart grid [37], etc.

1Experimental characterizations of the autocorrelation exhibited by the observed phenomena, like the
investigation of MIMO channel gains in [32], can be used to determine the downsampling necessary to
satisfy the i.i.d. assumptions. Nevertheless, such downsampling comes at the cost of secrecy rate losses.
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… S1 S2 Sn 

Z1 X2 Z2 Xn Zn X1 Y1 Y2 Yn 

Figure 3.1 Sibling Hidden Markov Model for generating the secret key

One technical problem arises immediately. Since the techniques used for studying i.i.d

cases are based on typicality arguments, they cannot be readily employed for non-i.i.d models

such as the HMM. To evaluate the secret key capacity of the SHMM, our approach starts by

extending known single shot results. Tyagi and Watanabe [38] propose to upper-bound the

secret key capacity in terms of the probability of missed detection in a binary hypothesis test.

We shall use this bound, along with the single shot lower bound studied in [39] to explore

the secret key capacity of the SHMM. The main difficulty in our approach comes from the

method’s computational complexity. To address this issue, we transform the bounds into a

log-likelihood ratio of the joint probabilities of the observed variables, and notice that the

computational obstacle resides in the non-additivity of the log-likelihood ratio. At this point,

following a method developed by Fuh in [40], we express each joint probability distribution

as the L1 norm of a product of random matrices. It was shown in [40] that the logarithm

of this matrix product norm can be written as a cumulative functional of a Markov chain,

which under certain common assumptions converges to a Lyapunov exponent (as the size of

the chain grows towards infinity). Finally, we employ numerical methods to estimate each

of the Lyapunov exponents, and compute our bounds.

The rest of this chapter is organized as follows. Section 3.2 provides a brief overview

of the related work. In section 3.3 we describe the system model and assumptions, while
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in section 3.5 we present the derivation of the upper and lower bounds on the secret key

capacity of the SHMM. In section 3.6, we explain how we can express the bounds in terms of

the L1 norms of products of random matrices, and finally in terms of Lyapunov exponents,

and we discuss how to calculate each Lyapunov exponent based on a numerical method.

Section 3.7 is devoted to simulation results, while section 3.8 contains concluding remarks.

We should mention that partial results from this chapter were previously published in [41].

By comparison, the current version provides the characterization of both lower and upper

bounds, and is more complete and self-contained.

3.2 Related Work

Two important techniques to study single-shot scenarios have been developed, namely

smooth entropies and information spectrum methods [42]. As an example of the smooth

entropy method, in [9] Renner and Wolf derived single-shot upper and lower bounds on the

size of the secret key. In [43], new bounds were proposed based on the large deviation tech-

nique and the idea of smoothing, while [44] derived new bounds for the length of the secret

key based on the information spectrum methods. Unfortunately extending these bounds

not only to our SHMM model, but even for simpler non-i.i.d cases is not computationally

tractable [38].

Hayashi and Watanabe studied the problem of secure uniform random number generation

(SURNG) for Markov chains in [45]. In this problem X and Y are two correlated random

variables with joint distribution PXY . The aim is to build a new random variable from X

which has no correlation with Y . To produce such a random variable, a two-universal hash

function is applied to the random variable X. The authors have considered a Markov model

with the transition matrix W (x, y|x′, y′) = P (Xn = x, Yn = y|Xn−1 = x′, Yn−1 = y′). This

model has been shown in Figure 3.2. The authors evaluated the Rényi entropy for the Markov
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Figure 3.2 Markov Model for generating the secret key

chain in terms of a newly defined measure: the Rényi entropy for the transition matrix. To

derive computable asymptotic bounds based on different discussed asymptotic regimes [45]

and non-asymptotic bounds, the transition matrix must be non-hidden or strongly non-

hidden. A transition matrix is non-hidden if
∑

xW (x, y|x′, y′) = WY (y|y′) and it is strongly

non-hidden if
∑

x W (x, y|x′, y′)1+θ is independent of x′ for every θ ∈ (−1,∞). Although

this Markov model has its own merit and application, we believe that our proposed SHMM

applies to a broader range of real-life scenarios.

3.3 System Model

In the study of non-i.i.d cases, the information-spectrum methods of [46] are powerful

tools. In the remainder of this section we formalize our SHMM, and we introduce some

notation and terminology from hypothesis testing [47, 48, 49] – this terminology is relevant

for understanding the upper and lower bounds of [50], which are the starting point in our

study. The reader familiar with these concepts can skip ahead to Section 3.5.
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3.4 Generating Secret Key Problem

Assume that the common randomness at the disposal of Alice and Bob is represented

by two correlated random variables, X and Y respectively. In addition, assume that an

adversary Eve possesses side information (Z) correlated with the two legitimate users’ in-

formation (X, Y and Z take values from X ,Y and Z respectively). Alice and Bob want to

generate a secret key through the use of an additional public but authenticated channel, i.e,

the adversary eavesdropper can overhear the public discussion, but cannot actively interfere

with it. The key establishment process is constructed, as usual, of two phases: information

reconciliation and privacy amplification. In the information reconciliation phase, the legit-

imate users exchange communication over the public channel, and end up agreeing on the

same exact randomness-bearing sequence. Communication between Alice and Bob in this

phase can be either one-way or interactive. Since some information about the agreed-upon

randomness-bearing sequence has been revealed to Eve from both her own side information

Z and from the the public communication of the former phase, the goal of privacy ampli-

fication is to increase the secrecy of the first phase output. This is usually performed by

applying a randomness extractor. Eventually, Alice and Bob will have random variables KA

and KB respectively as their shared secret key. The two keys have to be the same with high

probability, and have to be distributed uniformly given the adversary’s knowledge.

Definition 7. Alice and Bob, by public communication represented as F , can generate an

(ε, δ)−secure secret key [51] if

P (KA = KB = K) ≥ 1− ε

and

d(PKFZ ,
1

|K|PFZ) ≤ δ
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where

d(P,Q) =
1

2

∑
x

|P (x)−Q(x)|.

In Definition 7, d is the statistical distance (also known as the total variation distance),

and quantifies the distance between the real and the ideal probability distributions. Note

that the probability distribution of the the secret key is ideally uniform and independent

of Eve’s information. It is known [52] that the statistical distance defined above can be

equivalently expressed as d(P,Q) = maxX0⊂X{|P (X0)−Q(X0)|}.
A new definition of the secret key, called “ε-security”, was proposed in [50] by combining

the conditions in Definition 7:

Definition 8. ε-secure secret key can be generated between Alice and Bob if

d(PKAKBFZ , PunifPFZ) ≤ ε,

where

Punif (KA, KB) =
�(KA = KB)

|K| .

3.4.1 Sibling Hidden Markov Models

As discussed in section 3.1, we study a model in which Alice (Xn), Bob (Yn) and Eve (Zn)

have access to imperfect observations of a source represented by a Markov chain (Sn). This

model has been illustrated in Fig 3.1. Although our approach can theoretically be applied to

random variables taking values from finite sets, due to computational issues, our study has

been restricted to all-binary random variables, i.e, Xn, Yn, Zn and Sn ∈ {0, 1}. Moreover, we

have assumed that the underlying Markov chain is irreducible and aperiodic, and that its

initial distribution is the stationary distribution, π. The transition matrix for the underlying
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Markov chain is represented by TS

TS =

⎡
⎢⎣1− αS αS

βS 1− βS

⎤
⎥⎦ .

Corresponding emission matrices for Alice, Bob and Eve are denoted respectively by

EA =

⎡
⎢⎣1− αA αA

βA 1− βA

⎤
⎥⎦ , EB =

⎡
⎢⎣1− αB αB

βB 1− βB

⎤
⎥⎦

and

EZ =

⎡
⎢⎣1− αZ αZ

βZ 1− βZ

⎤
⎥⎦ .

3.5 The Secret Key Establishment Potential of the Sibling

Hidden Markov Model

3.5.1 Upper Bound

It is only feasible for Alice and Bob to generate secret bits when, conditioned on Eve’s

side information, they have additional shared information. Based on this idea, [50] derived

a single-shot upper bound for the length of the ε-secure secret key length (Sε(X, Y |Z)) in

terms of β (defined in 1.3.3), as a distance between the joint probability distribution PXY Z

and PX|ZPY |ZPZ . Namely, for every 0 ≤ ε < 1 and 0 < η < 1− ε, we have

Sε(X, Y |Z) ≤ − log βε+η(PXY Z , PX|ZPY |ZPZ) (3.1)

+2 log(
1

η
).
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Unfortunately, there is currently no way to efficiently calculate β directly for our SHMM.

However, by defining the spectrum divergence [53] between two distributions as

Dε
s(Pθ0 ||Pθ1) (3.2)

= sup{R : Pθ0{x ∈ X : log
Pθ0(x)

Pθ1(x)

≤ R} ≤ ε},

and by applying the Neyman Pearson lemma, we have the following lemma [44].

Lemma 3. For every ε ∈ {0, 1} and 0 < η1 < 1 − ε, the following relation between β and

the spectrum divergence holds:

−Dε+η1
s (Pθ0‖Pθ1)− log

1

η1
≤ log βε ≤ −Dε

s(Pθ0‖Pθ1). (3.3)

Consequently, the following upper bound for the achievable ε-secure secret key length

can be expressed by combining (3.1) and (3.3):

Sε(X, Y |Z) ≤ Dε+η1+η
s (PXY Z ||PX|ZPY |ZPZ) (3.4)

+ log(
1

η2η1
).

The advantage of (3.4) over (3.1) resides in computational costs which will be discussed

in the upcoming sections. By extending the new single-shot upper bound for a sequence of

length n, for every 0 ≤ ε < 1 and 0 < η, η1 < 1 − ε, the maximum length of an ε-secure

secret key can be written as

Sε(X
n, Y n|Zn) (3.5)

≤ Dε+η1+η
s (PXnY nZn ||PXn|ZnPY n|ZnPZn)

+ log(
1

η2η1
).

3.5.2 Lower Bound

Recently [39] proposed a protocol to generate a single-shot secret key based on inter-

active communication. The results of [39] can be considered as an achievable lower bound
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for the length of the secret key. Recall that the protocol has two steps: information rec-

onciliation and privacy amplification. As discussed in section 1.3.1, intuition suggests that

Hmax(PXY |PY ) bits have to be communicated between Alice and Bob in the information

reconciliation phase for every realization of (X, Y ). This amount can be proved by the single

shot Slepian-Wolf theorem [54]. Nevertheless, [39] proposes an interactive communication

protocol to decrease the number of exchanged bits for specific realizations of (X, Y ). To

this end, the spectrum of PX|Y is divided into L slices, each of width Δ. This technique is

called information slicing and was introduced in [46]. Instead of binning X with the bin

size of Hmax(PXY |PY ) bits, the bin size starts from almost Hmin(PXY |PY ) and is increased

iteratively, each time by as much as Δ bits. As a consequence of this method, it can be

observed that when Hmin(PXY |PY ) coincides with Hmax(PXY |PY ) then it is sufficient that

Alice and Bob communicate with each other just one time – no need for spectrum slicing.

This observation makes things a bit easier for us – namely, in the asymptotic regime, where

the probability distributions concentrate at their averages, and Hmin becomes close to Hmax,

we can actually achieve the lower bound through a very simple protocol, in which the entire

reconciliation information is transmitted in one step. By contrast, in the non-asymptotic

case, even if we could calculate the lower bound, the protocol to achieve it would not be

feasible, as the slicing technique involves calculating the (smooth) minimum and maximum

conditional entropies of X given Y – in turn, this relies on the calculation of the entire

spectrum of PX|Y .

In the general case, the number of bits that need to be exchanged between Alice and

Bob in this reconciliation protocol is roughly log 1
Px|y

for the specific realization (x, y) of

(X, Y ). Moreover, for privacy amplification the authors of [39] have used two-universal hash

functions as strong seeded extractors. Altogether, based on the proposed protocol, we can

derive the lower bound of the length of the secret key, i.e, for every η3 > 0 and λ ≥ 0, there



www.manaraa.com

60

exists an (ε, δ)-secure secret key taking value from a set S ∈ {0, 1}u with

ε ≤ PXY (T0) + L2−η3 (3.6)

and

δ ≤ P (iXY (X, Y )− iXZ(X,Z) ≤ λ+Δ) + L2−η3 (3.7)

+
1

2

√
2u−λ+η3+3 logL +

1

L
+ PXY (T0),

where

iXY (x, y) := log
PXY (x, y)

PX(x)PY (y)

and

T0 = {(x, y)| log 1

PX|Y (x, y)
< Hmin(PXY |PY ) or

log
1

PX|Y (x, y)
> Hmax(PXY |PY )}.

The secret key capacity C when X, Y and Z are n-symbol sequences, can be defined as

1/n times the length of the secret key when the security parameters such as ε and δ go to

zero.

Lemma 4. The upper bound and lower bound of the secret key capacity for a sequence is equal

to the left most point in the spectrum of 1
n
log PXnY nZnPZn

PXnZnPY nZn
and 1

n
log(PXnY n

PXnZn

PZn

PY n
) respectively,

when (Xn, Y n, Zn) is distributed by PXnY nZn.
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Proof. The upper bound on the secret key capacity is obtained directly from (3.5), and the

lower bound by appropriately choosing the parameters of (3.6) as

L = Ln =
Hmax(PXnY n |PY n)−Hmin(PXnY n |PY n)

Δ

η3 = η3n =
nΔ

2

λ = λn = n(P − lim inf
n→∞

1

n
(iXnY n(Xn, Y n)

−iXnZn(Xn, Zn)))−Δ

= n(P − lim inf
n→∞

(
1

n
log

PXnY n

PXnZn

PZn

PY n

))−Δ.

The third term after the inequality in (3.8) can be written as

1

2

√
2n(

u
n
−λn

n
+

η3n
n

+ 3 logL
n

). (3.8)

So, when n → ∞, (ε and δ) → 0, and the lower bound for secret key capacity is P −
lim infn→∞( 1

n
log PXnY n

PXnZn

PZn

PY n
).

Our aim is now to evaluate the terms in Lemma 4 in the asymptotic case.

3.6 Calculating the Bounds

According to Lemma 4, we need to compute the probability distributions of the specific

log-likelihood ratios 1
n
log PXnY nZnPZn

PXnZnPY nZn
and 1

n
log(PXnY n

PXnZn

PZn

PY n
). The main problem in this step

is related to the non-additivity of the logarithm of the joint probability distributions of the

observations. To make it clearer, consider one joint distribution of the observations such as

PXnY n . This distribution can be written as

PXnY n =
∑
Sn

PSnPXn|SnPY n|Sn (3.9)

=
∑
Sn

PS1PX1|S1PY1|S1

n∏
i=2

PSi+1|Si
PXi|Si

PYi|Si
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where Si ∈ {0, 1} and i ∈ {1, 2, ..., n}. Similar expressions, involving intractable sum-

mations, can be written for the other joint probability distributions. To deal with such

intractable summations, [40] employs a method based on the L1 norm of product of random

matrices. Namely, and as an example, PXnY n can be written as follows:

PXnY n = ‖MXn,Yn ... MX2,Y2MX1,Y1π‖ = ‖TnXY
π‖ (3.10)

where:

π =

⎡
⎢⎣

βS

αS+βS

αS

αS+βS

⎤
⎥⎦ ,

MX1,Y1 =

⎡
⎢⎣f10(X1Y1) 0

0 f11(X1Y1)

⎤
⎥⎦ ,

MXn,Yn =

⎡
⎢⎣(1− αS)fn0(XnYn) βSfn0(XnYn)

αSfn1(XnYn) (1− βS)fn1(XnYn)

⎤
⎥⎦ ,

TnXY
= MXn,Yn . . .MX2,Y2MX1,Y1 , (3.11)

and

fn0 = P (Xn|Sn = 0)P (Yn|Sn = 0), (3.12)

fn1 = P (Xn|Sn = 1)P (Yn|Sn = 1). (3.13)

We can write the other joint distributions in Lemma 4 in a similar way, with the only

difference appearing in (3.12), (3.13), where, for PXnY nZn ,

fn0 = P (Xn|Sn = 0)P (Yn|Sn = 0)P (Zn|Sn = 0)

fn1 = P (Xn|Sn = 1)P (Yn|Sn = 1)P (Zn|Sn = 1),
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for PXnZn ,

fn0 = P (Xn|Sn = 0)P (Zn|Sn = 0)

fn1 = P (Xn|Sn = 1)P (Zn|Sn = 1),

for PZn ,

fn0 = P (Zn|Sn = 0)

fn1 = P (Zn|Sn = 1),

and for PY n ,

fn0 = P (Yn|Sn = 0)

fn1 = P (Yn|Sn = 1).

In these equations, fn0 and fn1 can be denoted by f0 and f1 respectively, since the emission

matrices do not depend on n.

Now the log-likelihood ratio in the upper bound of lemma (4) can be expressed as

1

n
log

PXnY nZnPZn

PXnZnPY nZn

(3.14)

=
1

n
log(

‖MXn,Yn,Zn ... MX2,Y2,Z2MX1,Y1,Z1π‖
‖MXn,Zn ... MX2,Z2MX1,Z1π‖
=

‖MZn ... MZ2MZ1π‖
‖MYn,Zn ... MY2,Z2MY1,Z1π‖

)

=
1

n
log

‖TnXY Z
π‖‖TnZ

π‖
‖TnXZ

π‖‖TnY Z
π‖ ,
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where TnY
, TnZ

, TnXZ
are defined analogously to (3.11). Similarly, the log-likelihood ratio in

the lower bound of lemma (4) can be written as

1

n
log

PXnY nPZn

PXnZnPY n

(3.15)

=
1

n
log(

‖MXn,Yn ... MX2,Y2MX1,Y1π‖
‖MXn,Zn ... MX2,Z2MX1,Z1π‖

·‖MZn ... MZ2MZ1π‖
‖MYn ... MY2MY1π‖

)

=
1

n
log

‖TnXY
π‖‖TnZ

π‖
‖TnXZ

π‖‖TnY
π‖ .

For the sake of convenience and since the upcoming discussion is the same for all Tns related

to the different joint probability distributions, we denote all of them with Tn. In the general

case, i.e, when all observations related toX, Y, Z are studied, the system {(Sn, Xn, Yn, Zn, Tn)}
is called a product of Markov random matrices.

The product of i.i.d. invertible random matrices was initially studied by [55]. It was

shown that the logarithm of the L1 norm of this product can be written as a simple functional

of a Markov chain, which asymptotically, and taking into account irreducibility assumption,

equals to the upper Lyapunov exponent. In [40] and [56], Fuh develops a methodology for

calculating the asymptotic limits for products of Markov random matrices. The problems

tackled therein refer to the efficiency of certain estimators [40] and change-point detection

algorithms [56] in HMMs. The rest of this chapter is based on this methodology, and uses

notation similar to [56].

Now 1
n
log ‖Tnπ‖ can be expressed as

log
‖Tnπ‖
‖Tn−1π‖ + log

‖Tn−1π‖
‖Tn−2π‖ + ... + log

‖T1π‖
‖π‖ . (3.16)

By definingKn = ‖Tnπ‖
‖Tn−1π‖ , and based on the dependency graph of Figure 3.3, (Sn, Xn, Yn, Zn, Kn)

or (Sn, Kn) form a Markov chain. It will be proved in the sequel that this Markov chain has

an invariant probability measure. At a first glance, it would seem thatKn is two-dimensional,
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… S1 

X1 

 

Y1 Z1 

K1 

S2 

X2 Y2 Z2 

K2 

Sn 

Xn Yn Zn 

Kn 

Figure 3.3 Dependency Graph of the Product of Random Matrix

but for our scenario it depends only on a one-dimensional variable. Define A∗
n and B∗

n as

follows:

Tnπ

‖Tn−1π‖ =

⎡
⎢⎣A

∗
n

B∗
n

⎤
⎥⎦ . (3.17)

The left hand side of the above equation can be written as

Tnπ

‖Tn−1π‖ =
MnTn−1π

‖Tn−2π‖
‖Tn−2π‖
‖Tn−1π‖ , (3.18)

and thus Kn we can be expressed as:

log
‖Tnπ‖
‖Tn−1π‖ = log ‖MnTn−1π

‖Tn−2π‖
‖Tn−2π‖
‖Tn−1π‖‖ (3.19)

= log ‖

⎡
⎢⎣

(1−αS)A
∗
n−1+βSB

∗
n−1

A∗n−1+B∗n−1
f0

αSA
∗
n−1+(1−βS)B

∗
n−1

A∗n−1+B∗n−1
f1

⎤
⎥⎦ ‖
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According to (3.19), we have following recursive equations for A∗
n and B∗

n:

A∗
n =

(1− αS)A
∗
n−1 + βSB

∗
n−1

A∗
n−1 +B∗

n−1

f0, (3.20)

B∗
n =

αSA
∗
n−1 + (1− βS)B

∗
n−1

A∗
n−1 +B∗

n−1

f1,

A∗
0 =

βS

αS + βS

and B∗
0 =

αS

αS + βS

,

and thus

1

n
log ‖Tnπ‖ =

1

n

n∑
1

log(A∗
n +B∗

n). (3.21)

Since the Markov chain (Sn, Xn, Yn, Zn, Kn) has an invariant probability measure, by

using the Ergodic theorem of [57], as n → ∞, (3.21) will converge to Lyapunov exponent γ

(a brief overview of the Lyapunov exponent, including a definition and historical applications

to similar contexts, is presented in the Appendix):

lim
n→∞

1

n
log ‖Tnπ‖ = γ = E[log(A∗

1 +B∗
1)]. (3.22)

As a result, we have the following theorem.

Theorem 3. The upper and lower bounds for the secret key capacity based on the binary

SHMM represented in Figure 3.1 when the underlying Markov chain is aperiodic and irre-

ducible can be expressed respectively as the following

lim
n→∞

1

n
log

PXnY nZnPZn

PXnZnPY nZn

= γxyz + γz − γxz − γyz, (3.23)

lim
n→∞

1

n
log

PXnY nPZn

PXnZnPY n

= γxy + γz − γxz − γy, (3.24)

where γxyz, γxy, γxz, γyz, γy and γz are Lyapunov exponents and according to (3.22) they are

related to the TnXY Z
, TnXY

, TnXZ
, TnY Z

, TnY
and TnZ

respectively.
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Note that the left-most point coincides with the right most point in the related spectra

of Lemma 4. So, the gap between the upper bound and the lower bound for the secret key

capacity of the SHMM can be written as

γxyz − γyz − γxy + γy, (3.25)

and when there is no Z (or equivalently Z is a constant), the upper and lower bounds become

equal to each other.

To calculate these Lyapunov exponents, we have to compute the related invariant prob-

ability measure for each case. Based on (3.19), it is clear that Kn depends only on a

one-dimensional variable, Wn = A∗n
A∗n+B∗n

. The invariant probability measure of the Markov

chain is the same as the stationary distribution of Wn and according to (3.19), it depends

on whether the underlying Markov chain, Sn, is 0 or 1. Consequently, we consider two sta-

tionary densities of Wn, i.e, m0 (when Sn = 0), and m1 (when Sn = 1). We can define the

joint stationary density of (Sn,Wn) as

P (Sn = i,Wn ≤ x) =

∫ x

0

mi(w)dw. (3.26)

For each TnXY Z
, TnXY

, TnXZ
, TnY Z

, TnY
and TnZ

there are corresponding m0 and m1. It

has been shown in [56] that

m0(x) = (1− αS)

∫ 1

0

∂

∂x
Q0(z(w, x))m0(w)dw (3.27)

+βS

∫ 1

0

∂

∂x
Q0(z(w, x))m1(w)dw,

m1(x) = αS

∫ 1

0

∂

∂x
Q1(z(w, x))m0(w)dw

+(1− βS)

∫ 1

0

∂

∂x
Q1(z(w, x))m1(w)dw

where

z(w, x) =
x

1− x

αSw + (1− βS)(1− w)

(1− αS)w + βS(1− w)
,



www.manaraa.com

68

and Qi is as follows:

for TnXY Z
:

Qi(z) = P (
f0(XnYnZn)

f1(XnYnZn)
≤ z|Sn = i) (3.28)

for TnXY
:

Qi(z) = P (
f0(XnYn)

f1(XnYn)
≤ z|Sn = i) (3.29)

for TnXZ
:

Qi(z) = P (
f0(XnZn)

f1(XnZn)
≤ z|Sn = i) (3.30)

for TnY Z
:

Qi(z) = P (
f0(YnZn)

f1(YnZn)
≤ z|Sn = i) (3.31)

and for TnZ
:

Qi(z) = P (
f0(Zn)

f1(Zn)
≤ z|Sn = i). (3.32)

Equation (3.28) is the Fredholm integral equation of the second kind and m0 and m1 can

be calculated for each Tn from this equation. We will discuss the numerical method to solve

Fredholm itegral in the next section.

Finally, to compute the Lyapunov exponents we can use the iterated expectation formula,

E(X) = E(E(X|Y )) [56]:

γ = E(E(log(A∗
n +B∗

n)|Sn−1,Wn−1)) (3.33)

=
∑
i=0,1

∫ 1

0

∑
j=0,1

P (Sn = j|Sn−1 = i)

·E(log(A∗
n +B∗

n)|Sn = j, Sn−1 = i,Wn−1 = u)mi(u)du

=

∫ 1

0

[(1− αS)G0(u) + αSG1(u)]m0(u)du

+

∫ 1

0

[βSG0(u) + (1− βS)G1(u)]m1(u)du,
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where

Gj(u) = E(log(A∗
n +B∗

n)|Sn = j, Sn−1 = i,Wn−1 = u). (3.34)

Using A∗
n and B∗

n from (3.19), we have

Gj(u) =
∑
i1

log([(1− αS)u+ βS(1− u)]f0(i1) (3.35)

+[αS + (1− βS)(1− u)f1(i1)])fj(i1).

Note that for each Tn we have to calculate corresponding Gj, for example to calculate Gj

for TnXY Z
, i1 in (3.35) runs over all the combinations of XY Z.

3.7 Simulation Results

To solve for m, from the Fredholm integral equation (3.28) we have to approximate

two quantities: first
∫ 1

0
∂
∂x
Q(z(w, x))m(w)dw and then ∂

∂x
Q(z(w, x)). We discretize both

x and w into N points each, such that 0 = x0 < x1, . . . , < xN = 1 and 0 = w0 <

w1, . . . , < wN = 1. Now the first quantity can be approximated as [ 1
N

∂
∂x
Q(z(w0, x))]m(w0)+∑N−1

j=1
1
2N

[ ∂
∂x
Q(z(wj, x)) +

∂
∂x
Q(z(wj+1, x))]m(wj) [56], while the second quantity can be ap-

proximated as Q(z(w,x+Δ))−Q(z(w,x))
Δ

, where Δ = 1/N .

Hence, (3.28) can be rewritten in the following matrix form:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0(0)

m0(
1
N
)

...

m0(
N−1
N

)

m1(0)

m1(
1
N
)

...

m1(
N−1
N

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AN×N BN×N

CN×N DN×N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0(0)

m0(
1
N
)

...

m0(
N−1
N

)

m1(0)

m1(
1
N
)

...

m1(
N−1
N

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This equation can be expressed as asm = Mm. As depicted, the matrixM is constructed

of four sub-matrices, that is, A, B, C and D. Each of these four sub-matrices can be written

as N column vectors, that is,

AN×N =

[
a1 a2 ... aN

]
,

BN×N =

[
b1 b2 ... bN

]
,

CN×N =

[
c1 c2 ... cN

]
,

DN×N =

[
d1 d2 ... dN

]
,

where

a1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1−α
N

∂
∂x
Q0(z(0, 0))

1−α
N

∂
∂x
Q0(z(0,

1
N
))

...

1−α
N

∂
∂x
Q0(z(0,

N−1
N

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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ai
i 
=1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1−α
2N

{ ∂
∂x
Q0(z(

i−1
N
, 0)) + ∂

∂x
Q0(z(

i
N
, 0))}

1−α
2N

{ ∂
∂x
Q0(z(

i−1
N
, 1
N
)) + ∂

∂x
Q0(z(

i
N
, 1
N
))}

...

1−α
2N

{ ∂
∂x
Q0(z(

i−1
N
, N−1

N
)) + ∂

∂x
Q0(z(

i
N
, N−1

N
))}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β
N

∂
∂x
Q0(z(0, 0))

β
N

∂
∂x
Q0(z(0,

1
N
))

...

β
N

∂
∂x
Q0(z(0,

N−1
N

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

bi
i 
=1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β
2N

{ ∂
∂x
Q0(z(

i−1
N
, 0)) + ∂

∂x
Q0(z(

i
N
, 0))}

β
2N

{ ∂
∂x
Q0(z(

i−1
N
, 1
N
)) + ∂

∂x
Q0(z(

i
N
, 1
N
))}

...

β
2N

{ ∂
∂x
Q0(z(

i−1
N
, N−1

N
)) + ∂

∂x
Q0(z(

i
N
, N−1

N
))}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

c1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α
N

∂
∂x
Q1(z(0, 0))

α
N

∂
∂x
Q1(z(0,

1
N
))

...

α
N

∂
∂x
Q1(z(0,

N−1
N

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

ci
i 
=1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α
2N

{ ∂
∂x
Q1(z(

i−1
N
, 0)) + ∂

∂x
Q1(z(

i
N
, 0))}

α
2N

{ ∂
∂x
Q1(z(

i−1
N
, 1
N
)) + ∂

∂x
Q1(z(

i
N
, 1
N
))}

...

α
2N

{ ∂
∂x
Q1(z(

i−1
N
, N−1

N
)) + ∂

∂x
Q1(z(

i
N
, N−1

N
))}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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d1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1−β
N

∂
∂x
Q1(z(0, 0))

1−β
N

∂
∂x
Q1(z(0,

1
N
))

...

1−β
N

∂
∂x
Q1(z(0,

N−1
N

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

di
i 
=1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1−β
2N

{ ∂
∂x
Q1(z(

i−1
N
, 0)) + ∂

∂x
Q1(z(

i
N
, 0))}

1−β
2N

{ ∂
∂x
Q1(z(

i−1
N
, 1
N
)) + ∂

∂x
Q1(z(

i
N
, 1
N
))}

...

1−β
2N

{ ∂
∂x
Q1(z(

i−1
N
, N−1

N
)) + ∂

∂x
Q1(z(

i
N
, N−1

N
))}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The sum of each column in matrix A, B, C andD are 1−α, β, α and 1−β respectively. To

see this, note that
∑N−1

i=1
d
dx
Q(z(w, xi)) = N . This comes from the fact that d

dx
Q(z(w, xi)) =

Q(z(w,xi+Δ))−Q(z(w,xi))
Δ

, 1/Δ = N , and
∑N−1

i=1 [Q(z(w, xi +Δ))−Q(z(w, xi)] = 1 because Q is

a cummulative distribution function, so Q(z(w, 1)) = 1 and Q(z(w, 0)) = 0. So, the sum

of each column in matrix M is one. This guarantees that the matrix M has an eigenvalue

equal to 1, which means that m is the eigenvector of matrix M corresponding to eigenvalue

1. Hence, m is invariant.

We have simulated this method for several cases. In all of the scenarios, αS = βS unless

otherwise stated and we vary αS from .05 to .5 by increasing .05 in each step.

To study the effect of Eve’s channel on the secret key capacity, we considered symmetric

channels for Alice, Bob and Eve. We fixed Alice and Bob’s crossover probability .2 and .3

respectively and defined corresponding emission matrices as follows

EA =

⎡
⎢⎣.8 .2

.2 .8

⎤
⎥⎦ EB =

⎡
⎢⎣.7 .3

.3 .7

⎤
⎥⎦ .
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Figure 3.4 The upper bound secret key capacity by fixing Alice and Bob’s emission
matrices and changing Eve’s crossover probability

Then we vary Eve’s crossover probability, αZ , from .3 to .5 by increasing it .02 in each

step. The upper and lower bounds of the secret key capacity in this case are depicted in

Figures 3.4 and 3.5. Note that the secret key capacity is dimension-less (its operational

meaning is the number of secret key bits per observed bit). It can be seen when Alice and

Bob’s channel are superior to the Eve’s channel (αA, αB < αZ), Alice and Bob can generate

more secret bits. Moreover, by increasing Eve’s crossover probability the gap between upper

and lower bound decreases and the minimum occurs when Eve’s channel is in worst case

according to Alice and Bob, i.e., when αZ = .5. To show it more accurately, we have

depicted the lower and upper bounds for four different values of αZ = .44, .46, .48 and .5 in

Figure 3.6.

Similarly, to evaluate the effect of one of the legitimate user’s channel, such as Bob,

on the secret key capacity, we considered symmetric channels for Alice, Bob and Eve. We
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Figure 3.5 The lower bound secret key capacity by fixing Alice and Bob’s emission
matrices and changing Eve’s crossover probability

Figure 3.6 Comparing the lower and upper bound for four different values of Eve’s
crossover probability when Alice and Bob’s emission matrices are fixed.
CP in figures stands for crossover probability
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Figure 3.7 The upper bound secret key capacity by fixing Alice and Eve’s emission
matrices and changing Bob’s crossover probability

fixed Alice and Eve’s crossover probability .2 and .4 respectively and defined corresponding

emission matrices as follows

EA =

⎡
⎢⎣.8 .2

.2 .8

⎤
⎥⎦ EZ =

⎡
⎢⎣.6 .4

.4 .6

⎤
⎥⎦ .

Then we vary Bob’s crossover probability, αB, from .3 to .5 by increasing it .02 in each

step. The upper and lower bounds of the secret key capacity in this case are depicted in

Figures 3.7 and 3.8. Again, it can be seen when Bob’s crossover probability .4 < αB < .5,

the legitimate user’s channels are not superior to Eve’s channel (αA, αB < αZ). So, they can

generate almost nothing. Moreover, the gap between upper and lower bound is less when

αB is closer to .3. Since, Eve’s channel is worst than legitimate users in this case.
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Figure 3.8 The lower bound secret key capacity by fixing Alice and Eve’s emission
matrices and changing Bob’s crossover probability

3.8 Conclusion

To come closer to real-life scenarios in the context of common-randomness-based secret

key establishment, we investigated the secret key potential of the SHMM. We provided an

upper and a lower bound on the secret key capacity of the model, by extending existing

single-shot results. While directly calculating the bounds for sequences of small length is

computationally feasible, when the observed sequence gets larger the task becomes quickly

intractable. We were able to calculate the upper and lower bounds in the asymptotic case,

based on a technique involving Lyapunov exponents of Markov random matrices, and we

provided the lower and upper bounds for the secret key capacity for several scenarios. It is

interesting to note that the asymptotic case enables not only the calculation of the bounds,

but also the the protocol to achieve the lower bound, while in the non-asymptotic (but large

sequence length) scenarios, not only is it intractable to calculate the bounds directly, but
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even if the lower bound were given the protocol to achieve it is no longer feasible. Future work

could focus on characterizing the secret key capacity of the SHMM in the non-asymptotic

regime.
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APPENDIX A. INFORMATION THEORY

Definition 9. Consider X to be a random variable with probability distribution PX(x) whose

entropy is defined as follows:

H(X) =
∑
x

pX(x)log
1

pX(x)
(A.1)

Definition 10. Consider X and Y are two random variables with joint probability distribu-

tion PXY (x, y). Joint entropy and mutual information are defined respectively as follows.

H(X, Y ) =
∑
x,y

pXY (x, y)log
1

pXY (x, y)
(A.2)

I(X;Y ) =
∑
x,y

pXY (x, y)log
pXY (x, y)

pX(x)pY (y)

Definition 11. Consider X and Y are two random variables with joint probability distribu-

tion PXY (x, y). Conditional entropy of X given Y is defined as follows.

H(X|Y ) =
∑
x,y

pXY (x, y)log
1

pXY (x|y) (A.3)

Definition 12. Let assume e(x; xn) is the empirical distribution of x in a sequence xn, i.e.,

e(x; xn) = N(x;xn)
n

, where N(x; xn) is the number of occurrences of x in the sequence xn.

Strongly ε-typical set T n
ε (X) is then defined as follows:

T n
ε (X) = {xn | |e(x; xn)− p(x)| ≤ ε, ∀x ∈ X} (A.4)

Definition 13. Let assume e(x, y; xn, yn) is the empirical distribution of (x, y) in a sequence

(xn, yn), i.e., e(x, y; xn, yn) = N(x,y;xn,yn)
n

where N(x, y; xn, yn) is the number of occurrences

of (x, y) in the sequence (xn, yn). Then strongly ε-typical set T n
ε (X, Y ) is defined as follows.

T n
ε (X, Y ) = {(xn, yn) | |e(x, y; xn, yn)− p(x, y)| ≤ ε, ∀x ∈ X} (A.5)



www.manaraa.com

87

Let consider a discrete memoryless channel (DMC) depicted in Figure. Base on the

achievability part of channel coding theorem, it can be proven that there exists a (n, 2nR)

code such that, for every R < I(X;Y ), the average probability of error goes to zero as n

goes to infinity.

An important theorem in distributed source coding that remains in the root of the achiev-

ability proof of secret-key generation in i.i.d case is the Slepian-Wolf theorem. Based on

Slepian-Wolf theorem, the lossless coding rate can be expressed as follows:

R1 ≥ H(X1|X2) (A.6)

R1 ≥ H(X2|X1)

R1 +R2 ≥ H(X1, X2)
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APPENDIX B. LYAPUNOV EXPONENT

To understand the Lyapunov exponent, we start with linear cocycles. In dynamical

systems, linear cocycles are defined as follows [58].

Let (M,B, μ) be a probability space, f : M → M be measure-preserving map and

A : M → Gl(d) be a measurable function, where Gl(d) is the set of invertible d×d matrices.

Then

F : M ×Rd → M ×Rd (B.1)

(x, v) → (f(x), A(x)v)

is a linear cocycle. It can be seen that

F n(x, v) = (fn(x), An(x)v)

where we denoted An(x) = A(fn−1(x))...A(f(x))A(x).

It can be proved [58] that, if
∫
M
log ‖A(x)‖dμ(x) < ∞ for any f-invariant probability

measure μ, then there exists λ : M → R such that the following limit holds μ− a.e.:

lim
n→∞

1

n
log ‖An(x)‖ = λ(x) (B.2)

Moreover, if μ is ergodic then λ(x) is constant and is called the Lyapunov exponent [55].

For our purposes, products of random matrices can be easily modeled as linear cocycles.

To see this, let us assume that {Mi} is the sequence of random matrices and consider f as

a shift map as follows:

f : M → M (B.3)

f(Mi,Mi+1,Mi+2, ...) = (Mi+1,Mi+2, ...).
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Now consider A as follows:

A : M → Gl(d) (B.4)

A(Mi,Mi+1,Mi+2, ...) = Mi

Hence, An(x) is the product of a sequence of random matrices, and the results for linear

cocycles can be applied to the product of random matrices.

The investigation of Lyapunov exponents in the context of HMMs backs to the study of

entropy rate in these models. In this context, [59] shows that the joint probability distribution

of the observed sequence can be expressed as the product of random matrices. Then, it shows

that the entropy rate of the HMM is the same as the top Lyapunov exponent of this product

of random matrices. However, since calculating Lyapunov exponents is usually not tractable,

[59] proposes an entropy rate evaluation method which does not depend on the computation

of the Lyapunov exponent.

Several techniques have been proposed in the literature for calculating or estimating

Lyapunov exponents. In [60], the authors have derived an upper bound for the Lyapunov

exponent. Pollicott in [61] used numerical methods to approximate the entropy rate in

HMMs, which was expressed based on Lyapunov exponents. Another novel method for

computing Lyapunov exponents was proposed in [62] – it is based on solving numerically an

eigenvalue problem.

Interestingly, the application of Lyapunov exponents has not been restricted to the study

of entropy rates in the HMMs. The authors in [63] show that the capacity of finite state

Markov channels can also be represented in terms of Lyapunov exponents. To derive this

capacity, [63] uses the product-of-random-matrices technique outlined above.
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